@@ -305,7 +305,6 @@ def mm(a, b):
305305 with config .patch ({"max_autotune" : True }):
306306 torch .compile (mm , dynamic = dynamic )(a , b )
307307
308- @skipIfRocm
309308 def test_precompilation_threads (self ):
310309 import threading
311310 from typing import Any , Dict
@@ -481,7 +480,6 @@ def addmm(x, a, b):
481480 with config .patch ({"max_autotune" : True }):
482481 torch .compile (addmm , dynamic = dynamic )(x , a , b )
483482
484- @skipIfRocm
485483 def test_autotune_conv1x1 (self ):
486484 # Assuming input has 3 channels and we want to produce 16 channels as output
487485 conv1x1 = (
@@ -512,7 +510,6 @@ def foo(mod, x):
512510 FileCheck ().check_not ("extern_kernels.convolution" ).run (code [0 ])
513511 self .assertEqual (conv1x1 (input_tensor ), out , atol = 1e-2 , rtol = 0 )
514512
515- @skipIfRocm
516513 def test_filled_cache_precompile (self ):
517514 def fn (a , b , c ):
518515 a = (a @ b ) @ c
@@ -531,7 +528,6 @@ def fn(a, b, c):
531528 fn_c = torch .compile (mode = "max-autotune-no-cudagraphs" )(fn )
532529 self .assertEqual (counters ["inductor" ]["select_algorithm_precompile" ], 0 )
533530
534- @skipIfRocm
535531 @fresh_inductor_cache ()
536532 @config .patch (search_autotune_cache = True )
537533 def test_search_autotune_cache (self ):
@@ -547,7 +543,6 @@ def fn(a, b, c):
547543 self .assertEqual (fn (* inputs ), fn_c (* inputs ), atol = 1e-2 , rtol = 1e-2 )
548544 self .assertEqual (counters ["inductor" ]["select_algorithm_precompile" ], 0 )
549545
550- @skipIfRocm
551546 @fresh_inductor_cache ()
552547 @config .patch (max_autotune = True , max_fusion_size = 2 )
553548 def test_jit_fusion_matches_aot_fusion (self ):
@@ -990,7 +985,6 @@ def tearDown(self):
990985 super ().tearDown ()
991986 PatchCaches .tearDown ()
992987
993- @skipIfRocm
994988 @parametrize ("dynamic" , (False , True ))
995989 def test_max_autotune_remote_caching (self , dynamic : bool ):
996990 from unittest .mock import patch
0 commit comments