-
Notifications
You must be signed in to change notification settings - Fork 4.1k
Closed
Description
hi I am using this repo code
g = tf.Graph()
with g.as_default():
# Graph Inputs
features = tf.placeholder(dtype=tf.float32,
shape=[None, 2], name='features')
targets = tf.placeholder(dtype=tf.float32,
shape=[None, 1], name='targets')
# Model Parameters
weights = tf.Variable(tf.zeros(shape=[2, 1],
dtype=tf.float32), name='weights')
bias = tf.Variable([[0.]], dtype=tf.float32, name='bias')
# Forward Pass
linear = tf.add(tf.matmul(features, weights), bias, name='linear')
ones = tf.ones(shape=tf.shape(linear))
zeros = tf.zeros(shape=tf.shape(linear))
prediction = tf.where(condition=tf.less(linear, 0.),
x=zeros,
y=ones,
name='prediction')
# Backward Pass
errors = targets - prediction
weight_update = tf.assign_add(weights,
tf.reshape(errors * features, (2, 1)),
name='weight_update')
bias_update = tf.assign_add(bias, errors,
name='bias_update')
train = tf.group(weight_update, bias_update, name='train')
saver = tf.train.Saver(name='saver')
and save it using
inputs = dict([(features.name, features)])
outputs = dict([(prediction.name, prediction)])
tf.saved_model.simple_save(sess, "my_path", inputs, outputs)
and I can use saved_model_cli to see the model, following is part of it
signature_def['serving_default']:
The given SavedModel SignatureDef contains the following input(s):
inputs['features:0'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 2)
name: features:0
but when I use TF2 tf.keras.model.load_model("my_path") it raise error KeyError: "The name 'features:0' refers to a Tensor which does not exist. The operation, 'features', does not exist in the graph.", using java api raise the similar error.
Could this save to savedModel? How should I do it correctly?
Metadata
Metadata
Assignees
Labels
No labels