|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "58f1cebe-9313-47be-91a7-a292c721fa70", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "**Installing the libraries.**" |
| 9 | + ] |
| 10 | + }, |
| 11 | + { |
| 12 | + "cell_type": "code", |
| 13 | + "execution_count": null, |
| 14 | + "id": "043947ca-ebbd-4f3b-973b-02aa8064d407", |
| 15 | + "metadata": {}, |
| 16 | + "outputs": [], |
| 17 | + "source": [ |
| 18 | + "!pip install pandas pyarrow" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "markdown", |
| 23 | + "id": "809281a1-0122-4332-b39e-7603e11d1f62", |
| 24 | + "metadata": {}, |
| 25 | + "source": [ |
| 26 | + "**Reading the data.**" |
| 27 | + ] |
| 28 | + }, |
| 29 | + { |
| 30 | + "cell_type": "code", |
| 31 | + "execution_count": null, |
| 32 | + "id": "9d7828ae-7a2a-4beb-b92e-a47786e7eb2c", |
| 33 | + "metadata": {}, |
| 34 | + "outputs": [], |
| 35 | + "source": [ |
| 36 | + "import pandas as pd\n", |
| 37 | + "\n", |
| 38 | + "sales_data = pd.read_csv(\n", |
| 39 | + " \"sales_data.csv\",\n", |
| 40 | + " parse_dates=[\"order_date\"],\n", |
| 41 | + " dayfirst=True,\n", |
| 42 | + ").convert_dtypes(dtype_backend=\"pyarrow\")\n", |
| 43 | + "\n", |
| 44 | + "sales_data.head(2)" |
| 45 | + ] |
| 46 | + }, |
| 47 | + { |
| 48 | + "cell_type": "code", |
| 49 | + "execution_count": null, |
| 50 | + "id": "239f06eb-db0b-45bb-9825-9192797bc55d", |
| 51 | + "metadata": {}, |
| 52 | + "outputs": [], |
| 53 | + "source": [ |
| 54 | + "sales_data.dtypes" |
| 55 | + ] |
| 56 | + }, |
| 57 | + { |
| 58 | + "cell_type": "code", |
| 59 | + "execution_count": null, |
| 60 | + "id": "f2f57af3-d689-45d7-a017-3578895c5179", |
| 61 | + "metadata": {}, |
| 62 | + "outputs": [], |
| 63 | + "source": [ |
| 64 | + "sales_data.info()" |
| 65 | + ] |
| 66 | + }, |
| 67 | + { |
| 68 | + "cell_type": "markdown", |
| 69 | + "id": "6ef0b664-c295-41d2-89c2-33086caee992", |
| 70 | + "metadata": {}, |
| 71 | + "source": [ |
| 72 | + "**Creating your first pivot table.**" |
| 73 | + ] |
| 74 | + }, |
| 75 | + { |
| 76 | + "cell_type": "code", |
| 77 | + "execution_count": null, |
| 78 | + "id": "df0d98f9-8c4e-4027-82d3-eca1b3e549f8", |
| 79 | + "metadata": {}, |
| 80 | + "outputs": [], |
| 81 | + "source": [ |
| 82 | + "pd.options.display.float_format = \"${:,.2f}\".format\n", |
| 83 | + "\n", |
| 84 | + "sales_data.pivot_table(\n", |
| 85 | + " values=\"sale_price\",\n", |
| 86 | + " index=\"sales_region\",\n", |
| 87 | + " columns=\"order_type\",\n", |
| 88 | + " aggfunc=\"sum\",\n", |
| 89 | + " margins=True,\n", |
| 90 | + " margins_name=\"Totals:\",\n", |
| 91 | + ")" |
| 92 | + ] |
| 93 | + }, |
| 94 | + { |
| 95 | + "cell_type": "markdown", |
| 96 | + "id": "5e91d372-b055-4447-a8f8-fe07962867a6", |
| 97 | + "metadata": {}, |
| 98 | + "source": [ |
| 99 | + "**Including sub-sub columns within your pivot table**" |
| 100 | + ] |
| 101 | + }, |
| 102 | + { |
| 103 | + "cell_type": "code", |
| 104 | + "execution_count": null, |
| 105 | + "id": "b888e088-1f2c-465a-a2bc-b8832c137e62", |
| 106 | + "metadata": {}, |
| 107 | + "outputs": [], |
| 108 | + "source": [ |
| 109 | + "import pandas as pd\n", |
| 110 | + "\n", |
| 111 | + "pd.options.display.float_format = \"${:,.2f}\".format\n", |
| 112 | + "\n", |
| 113 | + "sales_data.pivot_table(\n", |
| 114 | + " values=\"sale_price\",\n", |
| 115 | + " index=\"customer_state\",\n", |
| 116 | + " columns=[\"customer_type\", \"order_type\"],\n", |
| 117 | + " aggfunc=\"mean\",\n", |
| 118 | + ")" |
| 119 | + ] |
| 120 | + }, |
| 121 | + { |
| 122 | + "cell_type": "markdown", |
| 123 | + "id": "c19c30fc-3253-446a-b2e4-77dd4cc53c36", |
| 124 | + "metadata": {}, |
| 125 | + "source": [ |
| 126 | + "**Calculating multiple values in your pivot table.**" |
| 127 | + ] |
| 128 | + }, |
| 129 | + { |
| 130 | + "cell_type": "code", |
| 131 | + "execution_count": null, |
| 132 | + "id": "a59d0173-87a2-4960-9ece-461820392363", |
| 133 | + "metadata": {}, |
| 134 | + "outputs": [], |
| 135 | + "source": [ |
| 136 | + "import pandas as pd\n", |
| 137 | + "\n", |
| 138 | + "pd.options.display.float_format = \"${:,.2f}\".format\n", |
| 139 | + "\n", |
| 140 | + "sales_data.pivot_table(\n", |
| 141 | + " index=[\"sales_region\", \"product_category\"],\n", |
| 142 | + " values=[\"sale_price\", \"quantity\"],\n", |
| 143 | + " aggfunc=\"sum\",\n", |
| 144 | + " fill_value=0,\n", |
| 145 | + ")" |
| 146 | + ] |
| 147 | + }, |
| 148 | + { |
| 149 | + "cell_type": "code", |
| 150 | + "execution_count": null, |
| 151 | + "id": "138491eb-7082-47dd-a48d-993ad3219214", |
| 152 | + "metadata": {}, |
| 153 | + "outputs": [], |
| 154 | + "source": [ |
| 155 | + "# This example ensures column order matches the order in the values parameter.\n", |
| 156 | + "\n", |
| 157 | + "import pandas as pd\n", |
| 158 | + "\n", |
| 159 | + "pd.options.display.float_format = \"${:,.2f}\".format\n", |
| 160 | + "\n", |
| 161 | + "sales_data.pivot_table(\n", |
| 162 | + " index=[\"sales_region\", \"product_category\"],\n", |
| 163 | + " values=[\"sale_price\", \"quantity\"],\n", |
| 164 | + " aggfunc=\"sum\",\n", |
| 165 | + " fill_value=0,\n", |
| 166 | + ").loc[:, [\"sale_price\", \"quantity\"]]" |
| 167 | + ] |
| 168 | + }, |
| 169 | + { |
| 170 | + "cell_type": "markdown", |
| 171 | + "id": "c323235b-3479-469e-b6cb-ee08615897d5", |
| 172 | + "metadata": {}, |
| 173 | + "source": [ |
| 174 | + "**Performing more advanced aggregations.**" |
| 175 | + ] |
| 176 | + }, |
| 177 | + { |
| 178 | + "cell_type": "code", |
| 179 | + "execution_count": null, |
| 180 | + "id": "d2a2979b-694c-4880-aea7-9a1e8cf4573d", |
| 181 | + "metadata": {}, |
| 182 | + "outputs": [], |
| 183 | + "source": [ |
| 184 | + "pd.options.display.float_format = \"${:,.2f}\".format\n", |
| 185 | + "\n", |
| 186 | + "sales_data.pivot_table(\n", |
| 187 | + " values=[\"sale_price\"],\n", |
| 188 | + " index=\"product_category\",\n", |
| 189 | + " columns=\"customer_type\",\n", |
| 190 | + " aggfunc=[\"max\", \"min\"],\n", |
| 191 | + ")" |
| 192 | + ] |
| 193 | + }, |
| 194 | + { |
| 195 | + "cell_type": "code", |
| 196 | + "execution_count": null, |
| 197 | + "id": "45b1a6d7-1b72-458f-a25d-a3c1c7109a46", |
| 198 | + "metadata": {}, |
| 199 | + "outputs": [], |
| 200 | + "source": [ |
| 201 | + "pd.options.display.float_format = \"${:,.2f}\".format\n", |
| 202 | + "\n", |
| 203 | + "sales_data.pivot_table(\n", |
| 204 | + " values=[\"sale_price\", \"quantity\"],\n", |
| 205 | + " index=[\"product_category\"],\n", |
| 206 | + " columns=\"customer_type\",\n", |
| 207 | + " aggfunc={\"sale_price\": \"mean\", \"quantity\": \"max\"},\n", |
| 208 | + ")" |
| 209 | + ] |
| 210 | + }, |
| 211 | + { |
| 212 | + "cell_type": "code", |
| 213 | + "execution_count": null, |
| 214 | + "id": "93db010a-71c9-49d0-babb-ce99e0d8f801", |
| 215 | + "metadata": {}, |
| 216 | + "outputs": [], |
| 217 | + "source": [ |
| 218 | + "sales_data.pivot_table(\n", |
| 219 | + " values=\"employee_id\", index=\"sales_region\", aggfunc=\"count\"\n", |
| 220 | + ")" |
| 221 | + ] |
| 222 | + }, |
| 223 | + { |
| 224 | + "cell_type": "code", |
| 225 | + "execution_count": null, |
| 226 | + "id": "57f47424-fddf-4ab7-bff4-b3f973cb8565", |
| 227 | + "metadata": {}, |
| 228 | + "outputs": [], |
| 229 | + "source": [ |
| 230 | + "def find_unique(s):\n", |
| 231 | + " return len(s.unique())\n", |
| 232 | + "\n", |
| 233 | + "\n", |
| 234 | + "sales_data.pivot_table(\n", |
| 235 | + " values=\"employee_id\", index=[\"sales_region\"], aggfunc=find_unique\n", |
| 236 | + ")" |
| 237 | + ] |
| 238 | + }, |
| 239 | + { |
| 240 | + "cell_type": "markdown", |
| 241 | + "id": "a17481c1-eacb-4c6f-9b6d-889ade86f62f", |
| 242 | + "metadata": {}, |
| 243 | + "source": [ |
| 244 | + "**Using `.groupby()` and `crosstab()` for Aggregation**" |
| 245 | + ] |
| 246 | + }, |
| 247 | + { |
| 248 | + "cell_type": "code", |
| 249 | + "execution_count": null, |
| 250 | + "id": "2a483cf2-1bf0-48a6-b547-e537df15ceb9", |
| 251 | + "metadata": {}, |
| 252 | + "outputs": [], |
| 253 | + "source": [ |
| 254 | + "sales_data.pivot_table(\n", |
| 255 | + " values=\"sale_price\",\n", |
| 256 | + " index=\"product_category\",\n", |
| 257 | + " aggfunc=[\"min\", \"mean\", \"max\", \"std\"],\n", |
| 258 | + ")" |
| 259 | + ] |
| 260 | + }, |
| 261 | + { |
| 262 | + "cell_type": "code", |
| 263 | + "execution_count": null, |
| 264 | + "id": "b0031b51-22ab-4c64-bfd2-81de360db501", |
| 265 | + "metadata": {}, |
| 266 | + "outputs": [], |
| 267 | + "source": [ |
| 268 | + "(\n", |
| 269 | + " sales_data.groupby(\"product_category\").agg(\n", |
| 270 | + " low_price=(\"sale_price\", \"min\"),\n", |
| 271 | + " average_price=(\"sale_price\", \"mean\"),\n", |
| 272 | + " high_price=(\"sale_price\", \"max\"),\n", |
| 273 | + " standard_deviation=(\"sale_price\", \"std\"),\n", |
| 274 | + " )\n", |
| 275 | + ")" |
| 276 | + ] |
| 277 | + }, |
| 278 | + { |
| 279 | + "cell_type": "code", |
| 280 | + "execution_count": null, |
| 281 | + "id": "ef30559b-8be1-4eee-b644-5cc66d12f112", |
| 282 | + "metadata": {}, |
| 283 | + "outputs": [], |
| 284 | + "source": [ |
| 285 | + "pd.crosstab(\n", |
| 286 | + " index=sales_data.job_title,\n", |
| 287 | + " columns=sales_data.sales_region,\n", |
| 288 | + " margins=True,\n", |
| 289 | + " margins_name=\"Totals:\",\n", |
| 290 | + ")" |
| 291 | + ] |
| 292 | + }, |
| 293 | + { |
| 294 | + "cell_type": "code", |
| 295 | + "execution_count": null, |
| 296 | + "id": "6f47c7ac-e889-412e-98c9-8742c7b9d4e1", |
| 297 | + "metadata": {}, |
| 298 | + "outputs": [], |
| 299 | + "source": [ |
| 300 | + "(\n", |
| 301 | + " pd.crosstab(\n", |
| 302 | + " index=sales_data.job_title,\n", |
| 303 | + " columns=sales_data.sales_region,\n", |
| 304 | + " margins=True,\n", |
| 305 | + " margins_name=\"Totals:\",\n", |
| 306 | + " normalize=True,\n", |
| 307 | + " )\n", |
| 308 | + " * 100\n", |
| 309 | + ").map(\"{:.2f}%\".format)" |
| 310 | + ] |
| 311 | + } |
| 312 | + ], |
| 313 | + "metadata": { |
| 314 | + "kernelspec": { |
| 315 | + "display_name": "Python 3 (ipykernel)", |
| 316 | + "language": "python", |
| 317 | + "name": "python3" |
| 318 | + }, |
| 319 | + "language_info": { |
| 320 | + "codemirror_mode": { |
| 321 | + "name": "ipython", |
| 322 | + "version": 3 |
| 323 | + }, |
| 324 | + "file_extension": ".py", |
| 325 | + "mimetype": "text/x-python", |
| 326 | + "name": "python", |
| 327 | + "nbconvert_exporter": "python", |
| 328 | + "pygments_lexer": "ipython3", |
| 329 | + "version": "3.12.0" |
| 330 | + } |
| 331 | + }, |
| 332 | + "nbformat": 4, |
| 333 | + "nbformat_minor": 5 |
| 334 | +} |
0 commit comments