|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "## Importing necessary Imports" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "code", |
| 12 | + "execution_count": null, |
| 13 | + "metadata": {}, |
| 14 | + "outputs": [], |
| 15 | + "source": [ |
| 16 | + "import requests\n", |
| 17 | + "from bs4 import BeautifulSoup\n", |
| 18 | + "\n", |
| 19 | + "import pandas as pd\n", |
| 20 | + "import numpy as np\n", |
| 21 | + "import itertools #to create efficent looping to fetch more data in a go\n", |
| 22 | + "import re \n", |
| 23 | + "import random \n", |
| 24 | + "from textblob import TextBlob" |
| 25 | + ] |
| 26 | + }, |
| 27 | + { |
| 28 | + "cell_type": "markdown", |
| 29 | + "metadata": {}, |
| 30 | + "source": [ |
| 31 | + "## Movie Urls\n", |
| 32 | + "\n", |
| 33 | + "- https://www.rottentomatoes.com/browse/movies_at_home/audience:upright~critics:fresh?page=5\n", |
| 34 | + "\n", |
| 35 | + "- https://www.rottentomatoes.com/browse/movies_at_home/audience:spilled~critics:fresh?page=5\n", |
| 36 | + "\n", |
| 37 | + "- https://www.rottentomatoes.com/browse/movies_at_home/audience:spilled,upright~critics:fresh?page=5\n", |
| 38 | + "\n", |
| 39 | + "- https://www.rottentomatoes.com/browse/movies_at_home/audience:upright~critics:certified_fresh?page=5\n", |
| 40 | + "\n", |
| 41 | + "- https://www.rottentomatoes.com/browse/movies_at_home/audience:spilled~critics:certified_fresh?page=5\n", |
| 42 | + "\n", |
| 43 | + "- https://www.rottentomatoes.com/browse/movies_at_home/audience:spilled,upright~critics:certified_fresh?page=5\n", |
| 44 | + "\n", |
| 45 | + "- https://www.rottentomatoes.com/browse/movies_at_home/audience:upright~critics:rotten?page=5\n", |
| 46 | + "\n", |
| 47 | + "- https://www.rottentomatoes.com/browse/movies_at_home/audience:spilled~critics:rotten?page=5\n", |
| 48 | + "\n", |
| 49 | + "- https://www.rottentomatoes.com/browse/movies_at_home/audience:spilled,upright~critics:rotten?page=5\n", |
| 50 | + "\n", |
| 51 | + "Here we use page=5 as rottentomatoes will only allow us to check 140 movies at a time." |
| 52 | + ] |
| 53 | + }, |
| 54 | + { |
| 55 | + "cell_type": "code", |
| 56 | + "execution_count": null, |
| 57 | + "metadata": {}, |
| 58 | + "outputs": [], |
| 59 | + "source": [ |
| 60 | + "url = \"https://www.rottentomatoes.com/browse/movies_at_home/audience:upright~critics:fresh?page=5\"\n", |
| 61 | + "\n", |
| 62 | + "def getSoup(url):\n", |
| 63 | + " \"\"\"\n", |
| 64 | + " Utility function this get soup function will fetch the above url which stored in url var.\n", |
| 65 | + " \"\"\"\n", |
| 66 | + " headers = {\n", |
| 67 | + " 'User-Agent': 'Your User-Agent String',\n", |
| 68 | + " 'Authorization': 'Bearer Your_Authentication_Token' # Include this if authentication is required\n", |
| 69 | + " }\n", |
| 70 | + " response = requests.get(url, headers=headers)\n", |
| 71 | + " soup = BeautifulSoup(response.text, 'html.parser')\n", |
| 72 | + " return soup\n", |
| 73 | + "\n", |
| 74 | + "def getReviewText(review_url):\n", |
| 75 | + " '''Returns the user review text given the review url.'''\n", |
| 76 | + " # find div tags with class text show-more__control\n", |
| 77 | + " tag = review_url.find('p', attrs={'class': 'review-text'})\n", |
| 78 | + " return tag.getText()\n", |
| 79 | + "\n", |
| 80 | + "def getMovieTitle(review_url):\n", |
| 81 | + " '''Returns the movie title from the review url.'''\n", |
| 82 | + " # find title tag\n", |
| 83 | + " tag = review_url.find('title')\n", |
| 84 | + " title_tag = list(tag.children)[0].getText()\n", |
| 85 | + " \n", |
| 86 | + " # split the title and remove the unnecessary part\n", |
| 87 | + " movie_title = title_tag.split(' - Movie Reviews | Rotten Tomatoes')[0]\n", |
| 88 | + " return movie_title\n", |
| 89 | + "\n", |
| 90 | + "\n", |
| 91 | + "def getNounChunks(user_review):\n", |
| 92 | + " # create the doc object\n", |
| 93 | + " doc = nlp(user_review)\n", |
| 94 | + " # get a list of noun_chunks\n", |
| 95 | + " noun_chunks = list(doc.noun_chunks)\n", |
| 96 | + " # convert noun_chunks from span objects to strings, otherwise it won't pick\n", |
| 97 | + " noun_chunks_strlist = [chunk.text for chunk in noun_chunks]\n", |
| 98 | + " return noun_chunks_strlist" |
| 99 | + ] |
| 100 | + }, |
| 101 | + { |
| 102 | + "cell_type": "markdown", |
| 103 | + "metadata": {}, |
| 104 | + "source": [ |
| 105 | + "# Filtering the movie tags" |
| 106 | + ] |
| 107 | + }, |
| 108 | + { |
| 109 | + "cell_type": "code", |
| 110 | + "execution_count": null, |
| 111 | + "metadata": {}, |
| 112 | + "outputs": [], |
| 113 | + "source": [ |
| 114 | + "movies_soup = getSoup(url)\n", |
| 115 | + "movie_tags = movies_soup.find_all('a', attrs={'data-qa': \"discovery-media-list-item-caption\"}) + movies_soup.find_all('a', attrs={'class': \"js-tile-link\"})\n", |
| 116 | + "\n", |
| 117 | + "# filter the a-tags to get just the titles\n", |
| 118 | + "movie_links = [tag['href'] for tag in movie_tags]\n", |
| 119 | + "# remove duplicate links\n", |
| 120 | + "unique_movie_links = list(dict.fromkeys(movie_links))\n", |
| 121 | + "\n", |
| 122 | + "print(\"There are a total of \" + str(len(unique_movie_links)) + \" movie titles\")\n", |
| 123 | + "print(\"Displaying 10 titles\")\n", |
| 124 | + "unique_movie_links[:10]" |
| 125 | + ] |
| 126 | + }, |
| 127 | + { |
| 128 | + "cell_type": "markdown", |
| 129 | + "metadata": {}, |
| 130 | + "source": [ |
| 131 | + "## Filtering the movie URL's" |
| 132 | + ] |
| 133 | + }, |
| 134 | + { |
| 135 | + "cell_type": "code", |
| 136 | + "execution_count": null, |
| 137 | + "metadata": {}, |
| 138 | + "outputs": [], |
| 139 | + "source": [ |
| 140 | + "\n", |
| 141 | + "base_url = \"https://www.rottentomatoes.com\"\n", |
| 142 | + "movie_links = [base_url + tag['href'] + '/reviews' for tag in movie_tags]\n", |
| 143 | + "print(\"There are a total of \" + str(len(movie_links)) + \" movie user reviews\")\n", |
| 144 | + "print(\"Displaying 20 user reviews links\")\n", |
| 145 | + "movie_links[:20]" |
| 146 | + ] |
| 147 | + }, |
| 148 | + { |
| 149 | + "cell_type": "code", |
| 150 | + "execution_count": null, |
| 151 | + "metadata": {}, |
| 152 | + "outputs": [], |
| 153 | + "source": [ |
| 154 | + "movie_soups = [getSoup(link) for link in movie_links]\n", |
| 155 | + "# get all movie review links from the 140 listing\n", |
| 156 | + "movie_review_list = [getReviewText(movie_soup) for movie_soup in movie_soups]" |
| 157 | + ] |
| 158 | + }, |
| 159 | + { |
| 160 | + "cell_type": "code", |
| 161 | + "execution_count": null, |
| 162 | + "metadata": {}, |
| 163 | + "outputs": [], |
| 164 | + "source": [ |
| 165 | + "#Checking how many movie review were able to filter.\n", |
| 166 | + "movie_review_list = list(itertools.chain(*movie_review_list))\n", |
| 167 | + "\n", |
| 168 | + "print(\"There are a total of \" + str(len(movie_review_list)) + \" individual movie reviews\")\n", |
| 169 | + "print(\"Displaying 10 reviews\")\n", |
| 170 | + "print(movie_review_list[:10])" |
| 171 | + ] |
| 172 | + }, |
| 173 | + { |
| 174 | + "cell_type": "markdown", |
| 175 | + "metadata": {}, |
| 176 | + "source": [ |
| 177 | + "## Converting into the Pandas Data Frame" |
| 178 | + ] |
| 179 | + }, |
| 180 | + { |
| 181 | + "cell_type": "code", |
| 182 | + "execution_count": null, |
| 183 | + "metadata": {}, |
| 184 | + "outputs": [], |
| 185 | + "source": [ |
| 186 | + "review_texts = [getReviewText(url) for url in movie_soups]\n", |
| 187 | + "\n", |
| 188 | + "# get movie name from the review link\n", |
| 189 | + "movie_titles = [getMovieTitle(url) for url in movie_soups]\n", |
| 190 | + "print(movie_titles)\n", |
| 191 | + "\n", |
| 192 | + "# Filtering the dataframe with only User_reviews by avoiding links and title\n", |
| 193 | + "\n", |
| 194 | + "# construct a dataframe\n", |
| 195 | + "df = pd.DataFrame({'user_review': review_texts })" |
| 196 | + ] |
| 197 | + }, |
| 198 | + { |
| 199 | + "cell_type": "code", |
| 200 | + "execution_count": null, |
| 201 | + "metadata": {}, |
| 202 | + "outputs": [], |
| 203 | + "source": [ |
| 204 | + "df.head(5) #displaying the resultant data frame" |
| 205 | + ] |
| 206 | + }, |
| 207 | + { |
| 208 | + "cell_type": "markdown", |
| 209 | + "metadata": {}, |
| 210 | + "source": [ |
| 211 | + "## The data frame need to remove index and filter the limit review length by 50 words" |
| 212 | + ] |
| 213 | + }, |
| 214 | + { |
| 215 | + "cell_type": "code", |
| 216 | + "execution_count": null, |
| 217 | + "metadata": {}, |
| 218 | + "outputs": [], |
| 219 | + "source": [ |
| 220 | + "text_list = [m for m in df['user_review']]\n", |
| 221 | + "#text_list" |
| 222 | + ] |
| 223 | + }, |
| 224 | + { |
| 225 | + "cell_type": "code", |
| 226 | + "execution_count": null, |
| 227 | + "metadata": {}, |
| 228 | + "outputs": [], |
| 229 | + "source": [ |
| 230 | + "#calculating the length of the text\n", |
| 231 | + "text_list_length = [len(m.split()) for m in text_list] \n", |
| 232 | + "df['length'] = text_list_length\n", |
| 233 | + "df" |
| 234 | + ] |
| 235 | + }, |
| 236 | + { |
| 237 | + "cell_type": "code", |
| 238 | + "execution_count": null, |
| 239 | + "metadata": {}, |
| 240 | + "outputs": [], |
| 241 | + "source": [ |
| 242 | + "df = df[df['length'] < 50] #limiting the df by 50 in length\n", |
| 243 | + "df" |
| 244 | + ] |
| 245 | + }, |
| 246 | + { |
| 247 | + "cell_type": "code", |
| 248 | + "execution_count": null, |
| 249 | + "metadata": {}, |
| 250 | + "outputs": [], |
| 251 | + "source": [ |
| 252 | + "df.drop('length', axis=1, inplace=True)\n", |
| 253 | + "df\n", |
| 254 | + "#dropping the len row" |
| 255 | + ] |
| 256 | + }, |
| 257 | + { |
| 258 | + "cell_type": "code", |
| 259 | + "execution_count": null, |
| 260 | + "metadata": {}, |
| 261 | + "outputs": [], |
| 262 | + "source": [ |
| 263 | + "#converting only reviews to CSV & removing the index\n", |
| 264 | + "df.to_csv('data_scrapped/data_rotten_tomatoes.csv', index=False) " |
| 265 | + ] |
| 266 | + }, |
| 267 | + { |
| 268 | + "cell_type": "markdown", |
| 269 | + "metadata": {}, |
| 270 | + "source": [ |
| 271 | + "## Splitting the csv file to the indivitual text files" |
| 272 | + ] |
| 273 | + }, |
| 274 | + { |
| 275 | + "cell_type": "code", |
| 276 | + "execution_count": null, |
| 277 | + "metadata": {}, |
| 278 | + "outputs": [], |
| 279 | + "source": [ |
| 280 | + "import csv\n", |
| 281 | + "\n", |
| 282 | + "with open(\"data_scrapped/data_rotten_tomatoes.csv\", \"r\",encoding=\"utf-8\") as f:\n", |
| 283 | + " reader = csv.reader(f)\n", |
| 284 | + " rownumber = 2639 # used to start the naming of the file , change it accordingly \n", |
| 285 | + " for row in reader:\n", |
| 286 | + " g=open(str(rownumber)+\".txt\",\"w\")\n", |
| 287 | + " g.write(str(row))\n", |
| 288 | + " rownumber = rownumber + 1\n", |
| 289 | + " g.close()" |
| 290 | + ] |
| 291 | + }, |
| 292 | + { |
| 293 | + "cell_type": "code", |
| 294 | + "execution_count": null, |
| 295 | + "metadata": {}, |
| 296 | + "outputs": [], |
| 297 | + "source": [ |
| 298 | + "def analyze_sentiment(text):\n", |
| 299 | + " \"\"\"\n", |
| 300 | + " Analyzes the sentiment of the input text.\n", |
| 301 | + " \n", |
| 302 | + " Returns:\n", |
| 303 | + " - 'positive' if sentiment polarity > 0\n", |
| 304 | + " - 'negative' if sentiment polarity < 0\n", |
| 305 | + " - 'neutral' if sentiment polarity == 0\n", |
| 306 | + " \"\"\"\n", |
| 307 | + " blob = TextBlob(text)\n", |
| 308 | + " polarity = blob.sentiment.polarity\n", |
| 309 | + " \n", |
| 310 | + " if polarity > 0:\n", |
| 311 | + " return 'positive'\n", |
| 312 | + " elif polarity < 0:\n", |
| 313 | + " return 'negative'\n", |
| 314 | + " else:\n", |
| 315 | + " return 'neutral'\n", |
| 316 | + "\n", |
| 317 | + "# Assuming df is your DataFrame containing the reviews\n", |
| 318 | + "df['sentiment'] = df['user_review'].apply(analyze_sentiment)\n" |
| 319 | + ] |
| 320 | + }, |
| 321 | + { |
| 322 | + "cell_type": "code", |
| 323 | + "execution_count": null, |
| 324 | + "metadata": {}, |
| 325 | + "outputs": [], |
| 326 | + "source": [ |
| 327 | + "df" |
| 328 | + ] |
| 329 | + } |
| 330 | + ], |
| 331 | + "metadata": { |
| 332 | + "language_info": { |
| 333 | + "name": "python" |
| 334 | + } |
| 335 | + }, |
| 336 | + "nbformat": 4, |
| 337 | + "nbformat_minor": 2 |
| 338 | +} |
0 commit comments