diff --git a/backlog/Technology_Trends_Analysis__survey_results_public_2018.ipynb b/backlog/Technology_Trends_Analysis__survey_results_public_2018.ipynb new file mode 100644 index 0000000..6108423 --- /dev/null +++ b/backlog/Technology_Trends_Analysis__survey_results_public_2018.ipynb @@ -0,0 +1,453 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "IZ1irwiFW7cl" + }, + "outputs": [], + "source": [ + "#importing the libraries\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns" + ] + }, + { + "cell_type": "code", + "source": [ + "# Load the dataset\n", + "df = pd.read_csv('/content/drive/MyDrive/GirlsScriptOpenSource/StockOverflow/survey_results_public_2018.csv')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9SKGuWl1fvsZ", + "outputId": "c358d73f-195e-45f8-94fb-9ae168d43838" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + ":2: DtypeWarning: Columns (8,12,13,14,15,16,50,51,52,53,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128) have mixed types. Specify dtype option on import or set low_memory=False.\n", + " df = pd.read_csv('/content/drive/MyDrive/GirlsScriptOpenSource/StockOverflow/survey_results_public_2018.csv')\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Display the first few rows of the dataframe\n", + "print(df.head())" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6Sv4xNGyfvvT", + "outputId": "a5beb9c1-af33-474f-8943-d5576e682d37" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " Respondent Hobby OpenSource Country Student \\\n", + "0 1 Yes No Kenya No \n", + "1 3 Yes Yes United Kingdom No \n", + "2 4 Yes Yes United States No \n", + "3 5 No No United States No \n", + "4 7 Yes No South Africa Yes, part-time \n", + "\n", + " Employment FormalEducation \\\n", + "0 Employed part-time Bachelor’s degree (BA, BS, B.Eng., etc.) \n", + "1 Employed full-time Bachelor’s degree (BA, BS, B.Eng., etc.) \n", + "2 Employed full-time Associate degree \n", + "3 Employed full-time Bachelor’s degree (BA, BS, B.Eng., etc.) \n", + "4 Employed full-time Some college/university study without earning ... \n", + "\n", + " UndergradMajor \\\n", + "0 Mathematics or statistics \n", + "1 A natural science (ex. biology, chemistry, phy... \n", + "2 Computer science, computer engineering, or sof... \n", + "3 Computer science, computer engineering, or sof... \n", + "4 Computer science, computer engineering, or sof... \n", + "\n", + " CompanySize \\\n", + "0 20 to 99 employees \n", + "1 10,000 or more employees \n", + "2 20 to 99 employees \n", + "3 100 to 499 employees \n", + "4 10,000 or more employees \n", + "\n", + " DevType ... \\\n", + "0 Full-stack developer ... \n", + "1 Database administrator;DevOps specialist;Full-... ... \n", + "2 Engineering manager;Full-stack developer ... \n", + "3 Full-stack developer ... \n", + "4 Data or business analyst;Desktop or enterprise... ... \n", + "\n", + " Exercise Gender SexualOrientation \\\n", + "0 3 - 4 times per week Male Straight or heterosexual \n", + "1 Daily or almost every day Male Straight or heterosexual \n", + "2 NaN NaN NaN \n", + "3 I don't typically exercise Male Straight or heterosexual \n", + "4 3 - 4 times per week Male Straight or heterosexual \n", + "\n", + " EducationParents \\\n", + "0 Bachelor’s degree (BA, BS, B.Eng., etc.) \n", + "1 Bachelor’s degree (BA, BS, B.Eng., etc.) \n", + "2 NaN \n", + "3 Some college/university study without earning ... \n", + "4 Some college/university study without earning ... \n", + "\n", + " RaceEthnicity Age Dependents MilitaryUS \\\n", + "0 Black or of African descent 25 - 34 years old Yes NaN \n", + "1 White or of European descent 35 - 44 years old Yes NaN \n", + "2 NaN NaN NaN NaN \n", + "3 White or of European descent 35 - 44 years old No No \n", + "4 White or of European descent 18 - 24 years old Yes NaN \n", + "\n", + " SurveyTooLong SurveyEasy \n", + "0 The survey was an appropriate length Very easy \n", + "1 The survey was an appropriate length Somewhat easy \n", + "2 NaN NaN \n", + "3 The survey was an appropriate length Somewhat easy \n", + "4 The survey was an appropriate length Somewhat easy \n", + "\n", + "[5 rows x 129 columns]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Select relevant columns for technology trends analysis\n", + "tech_columns = ['LanguageWorkedWith', 'LanguageDesireNextYear', 'DatabaseWorkedWith', 'DatabaseDesireNextYear',\n", + " 'PlatformWorkedWith', 'PlatformDesireNextYear', 'FrameworkWorkedWith', 'FrameworkDesireNextYear']" + ], + "metadata": { + "id": "JvxYGbhjgheF" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Filter the dataset with selected columns\n", + "tech_df = df[tech_columns]" + ], + "metadata": { + "id": "U4zChoe9gvVl" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Display the first few rows of the filtered dataframe\n", + "print(tech_df.head())" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "rapkJL4igwzG", + "outputId": "7a9b4aeb-6a2b-41d7-c44a-06c3c0faf7c7" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " LanguageWorkedWith \\\n", + "0 JavaScript;Python;HTML;CSS \n", + "1 JavaScript;Python;Bash/Shell \n", + "2 NaN \n", + "3 C#;JavaScript;SQL;TypeScript;HTML;CSS;Bash/Shell \n", + "4 C;C++;Java;Matlab;R;SQL;Bash/Shell \n", + "\n", + " LanguageDesireNextYear \\\n", + "0 JavaScript;Python;HTML;CSS \n", + "1 Go;Python \n", + "2 NaN \n", + "3 C#;JavaScript;SQL;TypeScript;HTML;CSS;Bash/Shell \n", + "4 Assembly;C;C++;Matlab;SQL;Bash/Shell \n", + "\n", + " DatabaseWorkedWith \\\n", + "0 Redis;SQL Server;MySQL;PostgreSQL;Amazon RDS/A... \n", + "1 Redis;PostgreSQL;Memcached \n", + "2 NaN \n", + "3 SQL Server;Microsoft Azure (Tables, CosmosDB, ... \n", + "4 SQL Server;PostgreSQL;Oracle;IBM Db2 \n", + "\n", + " DatabaseDesireNextYear \\\n", + "0 Redis;SQL Server;MySQL;PostgreSQL;Amazon RDS/A... \n", + "1 PostgreSQL \n", + "2 NaN \n", + "3 SQL Server;Microsoft Azure (Tables, CosmosDB, ... \n", + "4 PostgreSQL;Oracle;IBM Db2 \n", + "\n", + " PlatformWorkedWith PlatformDesireNextYear \\\n", + "0 AWS;Azure;Linux;Firebase AWS;Azure;Linux;Firebase \n", + "1 Linux Linux \n", + "2 NaN NaN \n", + "3 Azure Azure \n", + "4 Arduino;Windows Desktop or Server Arduino;Windows Desktop or Server \n", + "\n", + " FrameworkWorkedWith FrameworkDesireNextYear \n", + "0 Django;React Django;React \n", + "1 Django React \n", + "2 NaN NaN \n", + "3 NaN Angular;.NET Core;React \n", + "4 NaN NaN \n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Function to plot technology trends\n", + "def plot_technology_trends(column, title):\n", + " # Split the column values into individual technologies\n", + " tech_series = tech_df[column].str.split(';').explode().value_counts()\n", + "\n", + " # Plot the top 10 technologies\n", + " plt.figure(figsize=(12, 6))\n", + " sns.barplot(x=tech_series.values[:10], y=tech_series.index[:10])\n", + " plt.title(title)\n", + " plt.xlabel('Count')\n", + " plt.ylabel('Technology')\n", + " plt.show()" + ], + "metadata": { + "id": "PE8ZcJahgigb" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Plot trends for languages worked with\n", + "plot_technology_trends('LanguageWorkedWith', 'Top 10 Languages Worked With in 2018')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 564 + }, + "id": "Hbj-Y7BFg7Rb", + "outputId": "cfeaa5eb-d931-4090-e048-ca3790241588" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBsAAAIjCAYAAABCuxM+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhRklEQVR4nO3deVgV9f///8dB5LCDC4Ikgiju4r7vS+KuvVvUKCSz8p1p5lJa+nYp35ranmnlJ7XFNC3LzCUj98w1XJJMc+NtqKUBroTy+v3hl/PzhBro4AG7365rrqvzmte85jnDSNd5MPMamzHGCAAAAAAAwCJuri4AAAAAAADcXggbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAA8kF8fLx8fX3zdR+rV6+WzWbT6tWrC8x+svsuXLjwhvY1e/Zs2Ww2HTp06Ia2BwAUDIQNAIBbwmaz5WrJ7y9NkjR9+nTde++9Klu2rGw2m+Lj46/ZNzU1VY8++qiCgoLk4+Oj1q1ba/v27bnaT6tWrVS9enWLqkZuXbp0Sf7+/urevXuOda+88opsNpv69OmTY91//vMf2Ww2/fzzz7eizFvmk08+kc1m06JFi3Ksq1mzpmw2m1atWpVjXdmyZdWkSZNrjjt37ly9+uqrVpaaL06ePKkpU6aoRYsWCgoKUmBgoBo1aqT58+dftX9GRoaeeeYZhYaGysvLSw0bNtTKlStz9Pv666/18MMPq3r16ipSpIgiIiKuWUNKSooeffRRlStXTl5eXipfvryGDBmikydPWnWYAFDguLu6AADAP8MHH3zg9Pn999/XypUrc7RXqVIl32t58cUXdfr0aTVo0EApKSnX7JeVlaXOnTtrx44dGj58uEqWLKm33npLrVq10rZt2xQVFZXvtSLvihQpokaNGum7777LsW7Dhg1yd3fXhg0brrquVKlSqlix4q0o85Zp1qyZJGn9+vW66667HO3p6enavXu343y0bt3asS45OVnJycnq1auXJKlFixY6f/68PDw8HH3mzp2r3bt3a/DgwZbW++CDD6pXr16y2+2WjLdx40Y999xz6tSpk0aNGiV3d3d9+umn6tWrl/bs2aNx48Y59Y+Pj9fChQs1ePBgRUVFafbs2erUqZNWrVrlOJfS5eOfP3++6tSpo9DQ0Gvu/8yZM2rcuLHOnj2rxx9/XGFhYdqxY4fefPNNrVq1Stu2bZObG3//A3D7IWwAANwSDzzwgNPn77//XitXrszRfiusWbPGcVfD9W5zX7hwob777jstWLBA99xzjyTpvvvuU8WKFTVmzBjNnTv3VpWMPGrWrJlWrlyppKQkpwBrw4YNuu+++zR37lwdO3ZMISEhkqSLFy9q06ZNat++/U3v++zZs/Lx8bnpcawSGhqqcuXKaf369U7tGzdulDFG9957b4512Z+zv1y7ubnJ09PzltRbpEgRFSlSxLLxqlWrpn379ik8PNzR9vjjj6tdu3Z68cUX9fTTTzt+Xps3b9a8efM0ZcoUDRs2TJIUFxen6tWr6+mnn3YKsP773//q3XffVdGiRdWlSxft3r37qvtfvHixDh8+rCVLlqhz586O9uLFi2v8+PHasWOHateubdnxAkBBQYwKACgwzp49q6FDhyosLEx2u12VKlXS1KlTZYxx6mez2fTEE0/oo48+UqVKleTp6am6detq7dq1udpPeHi4bDbb3/ZbuHChgoOD9a9//cvRFhQUpPvuu09ffPGFMjIy8naAV7Fz507Fx8crMjJSnp6eCgkJUd++fXPcXj127FjZbDbt379f8fHxCgwMVEBAgB566CGdO3fOqe/58+c1aNAglSxZUn5+furWrZuOHj0qm82msWPHOvrFx8df9dbv7H1dadasWWrTpo1KlSolu92uqlWravr06Tm2zcrK0tixYxUaGipvb2+1bt1ae/bsUURERI7HVVJTUzV48GDHz7tChQp68cUXlZWV5dRv3rx5qlu3rvz8/OTv768aNWrotddeu+55zf6SfOUdDAcOHNCxY8f0xBNPyNPT02ldYmKizp496/SX62+//VbNmzeXj4+PAgMD1b17dyUlJV31XO3Zs0f333+/ihUr5jTGXyUmJiooKEitWrXSmTNnJElHjx5V3759FRwcLLvdrmrVqum9997Lse3//vc/9ejRQz4+PipVqpSeeuqpXF+DzZo10w8//KDz58872jZs2KBq1aqpY8eO+v77753O+4YNG2Sz2dS0aVNJOedsaNWqlb766isdPnzY8QjUX6+lrKwsTZgwQWXKlJGnp6fatm2r/fv3/22tV5uzISIiQl26dNH69evVoEEDeXp6KjIyUu+///7fjleuXDmnoEG6/DukR48eysjI0IEDBxztCxcuVJEiRfToo4862jw9PfXwww9r48aNSk5OdrSHhoaqaNGif7v/9PR0SVJwcLBTe+nSpSVJXl5efzsGABRG3NkAACgQjDHq1q2bVq1apYcffli1atXSihUrNHz4cB09elSvvPKKU/81a9Zo/vz5GjRokOx2u9566y116NBBmzdvtmyehB9++EF16tTJcYtzgwYN9M477+jnn39WjRo1bmofK1eu1IEDB/TQQw8pJCREP/74o9555x39+OOP+v7773N86b/vvvtUrlw5TZw4Udu3b9fMmTNVqlQpvfjii44+8fHx+uSTT/Tggw+qUaNGWrNmjdNfVG/E9OnTVa1aNXXr1k3u7u768ssv9fjjjysrK0sDBgxw9Bs5cqQmT56srl27KiYmRjt27FBMTIwuXLjgNN65c+fUsmVLHT16VI899pjKli2r7777TiNHjlRKSopjLoCVK1eqd+/eatu2reMYk5KStGHDBj355JPXrLdRo0Zyd3fX+vXr1a9fP0mXv0D7+Piofv36qlevnjZs2KC7777bsU76/0OKb775Rh07dlRkZKTGjh2r8+fP64033lDTpk21ffv2HF+s7733XkVFRem///1vjnAs25YtWxQTE6N69erpiy++kJeXl44fP65GjRo5ArSgoCAtW7ZMDz/8sNLT0x2PKJw/f15t27bVkSNHNGjQIIWGhuqDDz7Qt99+m4uf3uXj+uCDD7Rp0ya1atXKccxNmjRRkyZNlJaWpt27dys6OtqxrnLlyipRosRVx3vuueeUlpam//3vf45/m3+9S2jSpElyc3PTsGHDlJaWpsmTJys2NlabNm3KVc1/tX//ft1zzz16+OGH1adPH7333nuKj49X3bp1Va1atTyPd+zYMUlSyZIlHW0//PCDKlasKH9/f6e+DRo0kHQ5LAoLC8vTflq0aCE3Nzc9+eSTeumll1SmTBnt3LlTEyZMUI8ePVS5cuU81w4AhYIBAMAFBgwYYK7839Dnn39uJJkXXnjBqd8999xjbDab2b9/v6NNkpFktm7d6mg7fPiw8fT0NHfddVee6vDx8TF9+vS55rq+ffvmaP/qq6+MJLN8+fLrjt2yZUtTrVq16/Y5d+5cjraPP/7YSDJr1651tI0ZM8ZIylHPXXfdZUqUKOH4vG3bNiPJDB482KlffHy8kWTGjBnjaOvTp48JDw/Psf/sff1dnTExMSYyMtLx+dixY8bd3d306NHDqd/YsWONJKfz/PzzzxsfHx/z888/O/UdMWKEKVKkiDly5Igxxpgnn3zS+Pv7m4sXL+bY/9+pX7++KV++vOPzY489Zlq3bm2MMebpp5829evXd6y75557jLe3t8nMzDTGGFOrVi1TqlQpc/LkSUefHTt2GDc3NxMXF+doyz5XvXv3zrH/Pn36GB8fH2OMMevXrzf+/v6mc+fO5sKFC44+Dz/8sCldurT5/fffnbbt1auXCQgIcJz3V1991Ugyn3zyiaPP2bNnTYUKFYwks2rVquueix9//NFIMs8//7wxxpjMzEzj4+Nj5syZY4wxJjg42EybNs0YY0x6eropUqSIeeSRRxzbr1q1Ksd+OnfufNXrJ7tvlSpVTEZGhqP9tddeM5LMrl27rlvrrFmzjCRz8OBBR1t4eHiOfxMnTpwwdrvdDB069LrjXc3JkydNqVKlTPPmzZ3aq1WrZtq0aZOjf/b5mzFjxlXHu9a5yDZz5kwTGBjo+N2V/e8h+3oDgNsRj1EAAAqEpUuXqkiRIho0aJBT+9ChQ2WM0bJly5zaGzdurLp16zo+ly1bVt27d9eKFSt06dIlS2o6f/78VSepy352/cpb0m/UlbdQX7hwQb///rsaNWokSVd960X//v2dPjdv3lwnT5503Kq9fPlySZefSb/SwIEDLaszLS1Nv//+u1q2bKkDBw4oLS1NkpSQkKCLFy/mat8LFixQ8+bNVaxYMf3++++OpV27drp06ZLjkZjAwECdPXv2qm8D+DvNmjXTL7/84vgLdvZf8iWpadOm+uGHHxyPoGzYsEENGzaUu7u7UlJSlJiYqPj4eBUvXtwxXnR0tO68804tXbo0x77++nO50qpVqxQTE6O2bdvqs88+c1xTxhh9+umn6tq1q4wxTuchJiZGaWlpjmtg6dKlKl26tGPuEEny9vZ2ut3/eqpUqaISJUo45mLYsWOHzp496zgfTZo0cdzdsXHjRl26dOm6j4PkxkMPPeQ0oWTz5s0lyemxhbyoWrWqYwzp8iNNlSpVyvN4WVlZio2NVWpqqt544w2ndfn1b/6OO+5QgwYN9Oqrr2rRokUaMmSIPvroI40YMeKGxgOAwoCwAQBQIBw+fFihoaHy8/Nzas+e3O/w4cNO7Vd7E0TFihV17tw5/fbbb5bU5OXlddVn4rMfCbDiWetTp07pySefVHBwsLy8vBQUFKRy5cpJkuNL/JXKli3r9LlYsWKSpD/++EPS5fPk5ubmGCNbhQoVbqrODRs2qF27do75C4KCgvTss8861Zn9M/rrvooXL+6oM9u+ffu0fPlyBQUFOS3t2rWTJJ04cULS5dCkYsWK6tixo8qUKaO+ffs6ApW/c+W8Dampqfrxxx8dcxA0adJEFy9e1ObNm3Xw4EGlpKQ4+mcfR6VKlXKMWaVKFf3+++86e/asU/tfz3e2CxcuqHPnzqpdu7Y++eQTpy/fv/32m1JTU/XOO+/kOA8PPfSQ03k4fPiwKlSokOOxmqvVeDU2m01NmjRxzM2Q/eaN7J/VlWHDXx8puVF/d63e7HjZY+Z1vIEDB2r58uWaOXOmatas6bQuP/7Nb9iwQV26dNGECRP05JNPqkePHnrppZc0atQovfzyy9qzZ0+exwSAwoA5GwAAuIbSpUtf9dWY2W3Xe91dbt1333367rvvNHz4cNWqVUu+vr7KyspShw4dckyUKOmas/Sba8wTcD3XmiTzr3eG/PLLL2rbtq0qV66sl19+WWFhYfLw8NDSpUv1yiuvXLXOv5OVlaU777xTTz/99FXXZ79+slSpUkpMTNSKFSu0bNkyLVu2TLNmzVJcXJzmzJlz3X1c+cpHb29vSZfviJEuP6cfFRWl9evXOyb9u5kv19f6Emq329WpUyd98cUXWr58ubp06eJYl33eHnjgAfXp0+eq22fPoWCFZs2a6csvv9SuXbuc7vKQLocN2fOjrF+/XqGhoYqMjLyp/Vl5rVo13rhx4/TWW29p0qRJevDBB3OsL126tI4ePZqj/Wb+zb/99tsKDg5WvXr1nNq7deumsWPH6rvvvlPVqlXzPC4AFHSEDQCAAiE8PFzffPONTp8+7XR3w08//eRYf6V9+/blGOPnn3+Wt7e3goKCLKmpVq1aWrdunbKyspwmidy0aZO8vb0dX4hv1B9//KGEhASNGzdO//nPfxztVzu23AoPD1dWVpYOHjzodPfH1d4CUKxYMaWmpuZo/+tdJF9++aUyMjK0ePFip78ur1q1Kse+s/d15V/6T548meOvz+XLl9eZM2ccdzJcj4eHh7p27aquXbsqKytLjz/+uN5++22NHj36undslCpVyhEo+Pj4qGrVqgoMDHSsz/5r/v/+9z8VKVLEEURkH8fevXtzjPnTTz+pZMmSuX61pc1m00cffaTu3bvr3nvv1bJlyxwTNAYFBcnPz0+XLl362/MQHh6u3bt3yxjjFBJdrcZruTJ82bBhg2PySUmqW7eu7Ha7Vq9erU2bNqlTp065OrbCZNq0aRo7dqwGDx6sZ5555qp9atWqpVWrVik9Pd1pksjsSS1r1aqV5/0eP378qo92ZWZmSrr82lUAuB3xGAUAoEDo1KmTLl26pDfffNOp/ZVXXpHNZlPHjh2d2jdu3Og0p0FycrK++OILtW/f/pp/Ac2re+65R8ePH9dnn33maPv999+1YMECde3a9arPdudFdp1//cts9psYbkRMTIwk6a233nJq/+uz6dLlL/xpaWnauXOnoy0lJUWLFi362zrT0tI0a9Ysp35t27aVu7t7jldi/vVnKl2+o2Pjxo1asWJFjnWpqamOL2B/fQWom5ub46/9uXntY7NmzZSYmKivv/7a6S/50uWwYePGjVq3bp2io6MdIVfp0qVVq1YtzZkzxymM2b17t77++utcfRG/koeHhz777DPVr19fXbt21ebNmyVdPq933323Pv30U+3evTvHdlc+DtSpUyf9+uuvWrhwoaPt3Llzeuedd3JdR7169eTp6amPPvpIR48edTofdrtdderU0bRp03K8AvRafHx8rvqoT0GU/eaa2NhYvfzyy9fsd8899+jSpUtO5zUjI0OzZs1Sw4YN8/wmCunyXTrHjx93vDY028cffyxJql27dp7HBIDCgDsbAAAFQteuXdW6dWs999xzOnTokGrWrKmvv/5aX3zxhQYPHqzy5cs79a9evbpiYmKcXn0pXb5N+u98+eWX2rFjh6TLf13cuXOnXnjhBUmXb23O/jJ7zz33qFGjRnrooYe0Z88elSxZUm+99ZYuXbqUq/1Il78wZo99pXLlyik2NlYtWrTQ5MmTlZmZqTvuuENff/21Dh48mKuxr6Zu3bq6++679eqrr+rkyZOOV1/+/PPPkpz/Gt2rVy8988wzuuuuuzRo0CCdO3dO06dPV8WKFZ2CnPbt2zvuLnjsscd05swZvfvuuypVqpTTYybBwcGO1/t169ZNHTp00I4dO7Rs2TKVLFnSad/Dhw/X4sWL1aVLF8frC8+ePatdu3Zp4cKFOnTokEqWLKl+/frp1KlTatOmjcqUKaPDhw/rjTfeUK1atRzzeVxPs2bNNGvWLG3ZssXpFZ2SHK98TEtLyzGJ5ZQpU9SxY0c1btxYDz/8sOPVlwEBARo7dmyefibS5ccslixZojZt2qhjx45as2aNqlevrkmTJmnVqlVq2LChHnnkEVWtWlWnTp3S9u3b9c033+jUqVOSpEceeURvvvmm4uLitG3bNpUuXVoffPCB4/GQ3PDw8FD9+vW1bt062e12pwlWs8/HSy+95Dhvf6du3bqaP3++hgwZovr168vX11ddu3bNw1m5NTZv3qy4uDiVKFFCbdu21UcffeS0vkmTJo5HRho2bKh7771XI0eO1IkTJ1ShQgXNmTNHhw4d0v/93/85bbdz504tXrxY0uW7edLS0hz/1mvWrOk4F0888YRmzZqlrl27auDAgQoPD9eaNWv08ccf684771TDhg3z+xQAgGu47D0YAIB/tL+++tIYY06fPm2eeuopExoaaooWLWqioqLMlClTTFZWllM/SWbAgAHmww8/NFFRUcZut5vatWv/7ev/svXp08fpFXRXLrNmzXLqe+rUKfPwww+bEiVKGG9vb9OyZUuzZcuWXO2nZcuW19xP27ZtjTHG/O9//zN33XWXCQwMNAEBAebee+81v/76a47XVGa/YvG3335z2sfVXhN49uxZM2DAAFO8eHHj6+trevToYfbu3WskmUmTJjlt//XXX5vq1asbDw8PU6lSJfPhhx9e9dWXixcvNtHR0cbT09NERESYF1980bz33ns59n3x4kUzevRoExISYry8vEybNm1MUlKSKVGihOnfv7/TmKdPnzYjR440FSpUMB4eHqZkyZKmSZMmZurUqebPP/80xhizcOFC0759e1OqVCnj4eFhypYtax577DGTkpKSq59B9nFLyvGazaysLMfrCOfPn59j22+++cY0bdrUeHl5GX9/f9O1a1ezZ88epz7X+rkY4/zqy2y///67qVq1qgkJCTH79u0zxhhz/PhxM2DAABMWFmaKFi1qQkJCTNu2bc0777zjtO3hw4dNt27djLe3tylZsqR58sknzfLly3P16stsI0eONJJMkyZNcqz77LPPjCTj5+eX41WjV3v15ZkzZ8z999/vOIfZr37M7rtgwQKnMQ4ePHjVf2N/da1XX3bu3DlH35YtW5qWLVvmarzc/ps/f/68GTZsmAkJCTF2u93Ur1//qq+5vd64f32d7k8//WTuuecex884PDzcDBs2zJw9e/a6tQNAYWYz5gZn6QEAwEVsNpsGDBhw1dvzcXWJiYmqXbu2PvzwQ8XGxt7SfaempqpYsWJ64YUX9Nxzz93SfQMAANdgzgYAAG4z58+fz9H26quvys3NTS1atHDJviU5JkYEAAC3P+ZsAADgNjN58mRt27ZNrVu3lru7u+OVkY8++ugNTXCXF/Pnz9fs2bPVqVMn+fr6av369fr444/Vvn17NW3aNF/3DQAACg7CBgAAbjNNmjTRypUr9fzzz+vMmTMqW7asxo4de0seYYiOjpa7u7smT56s9PR0x6SRV5skEwAA3L6YswEAAAAAAFiKORsAAAAAAIClCBsAAAAAAIClmLOhEMvKytKvv/4qPz8/2Ww2V5cDAAAAALjNGWN0+vRphYaGys3t2vcvEDYUYr/++mu+zyoOAAAAAMBfJScnq0yZMtdcT9hQiPn5+Um6/EP29/d3cTUAAAAAgNtdenq6wsLCHN9Hr4WwoRDLfnTC39+fsAEAAAAAcMv83aP8TBAJAAAAAAAsxZ0Nt4EWoz5WEbuXq8sAAAAAAOTRtilxri4hX3BnAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhg4UOHTokm82mxMREV5cCAAAAAIDLFIiwIT4+Xj169Lil+1y0aJEaNWqkgIAA+fn5qVq1aho8ePBNjRkWFqaUlBRVr14919vMnj1bgYGBN7VfAAAAAAAKEndXF+AKCQkJ6tmzpyZMmKBu3brJZrNpz549Wrly5Q2P+eeff8rDw0MhISEWVgoAAAAAQOFTIO5suNLy5cvVrFkzBQYGqkSJEurSpYt++eUXx/omTZromWeecdrmt99+U9GiRbV27VpJ0gcffKB69erJz89PISEhuv/++3XixAlH/y+//FJNmzbV8OHDValSJVWsWFE9evTQtGnTnMb98ssvVb9+fXl6eqpkyZK66667HOsiIiL0/PPPKy4uTv7+/nr00UdzPEaxevVq2Ww2ffXVV4qOjpanp6caNWqk3bt3O9Y/9NBDSktLk81mk81m09ixY608nQAAAAAA3HIFLmw4e/ashgwZoq1btyohIUFubm666667lJWVJUmKjY3VvHnzZIxxbDN//nyFhoaqefPmkqTMzEw9//zz2rFjhz7//HMdOnRI8fHxjv4hISH68ccfHV/6r+arr77SXXfdpU6dOumHH35QQkKCGjRo4NRn6tSpqlmzpn744QeNHj36mmMNHz5cL730krZs2aKgoCB17dpVmZmZatKkiV599VX5+/srJSVFKSkpGjZs2DXHycjIUHp6utMCAAAAAEBBU+Aeo7j77rudPr/33nsKCgrSnj17VL16dd13330aPHiw1q9f7wgX5s6dq969e8tms0mS+vbt69g+MjJSr7/+uurXr68zZ87I19dXAwcO1Lp161SjRg2Fh4erUaNGat++vWJjY2W32yVJEyZMUK9evTRu3DjHWDVr1nSqrU2bNho6dKjj86FDh656TGPGjNGdd94pSZozZ47KlCmjRYsW6b777lNAQIBsNluuHr+YOHGiUz0AAAAAABREBe7Ohn379ql3796KjIyUv7+/IiIiJElHjhyRJAUFBal9+/b66KOPJEkHDx7Uxo0bFRsb6xhj27Zt6tq1q8qWLSs/Pz+1bNnSaQwfHx999dVX2r9/v0aNGiVfX18NHTpUDRo00Llz5yRJiYmJatu27XVrrVevXq6OqXHjxo7/Ll68uCpVqqSkpKRcbXulkSNHKi0tzbEkJyfneQwAAAAAAPJbgQsbunbtqlOnTundd9/Vpk2btGnTJkmXJ2DMFhsbq4ULFyozM1Nz585VjRo1VKNGDUmXH8OIiYmRv7+/PvroI23ZskWLFi3KMYYklS9fXv369dPMmTO1fft27dmzR/Pnz5ckeXl5/W2tPj4+lhxzbtntdvn7+zstAAAAAAAUNAUqbDh58qT27t2rUaNGqW3btqpSpYr++OOPHP26d++uCxcuaPny5Zo7d67TXQ0//fSTTp48qUmTJql58+aqXLmy0+SQ1xIRESFvb2+dPXtWkhQdHa2EhARLjuv77793/Pcff/yhn3/+WVWqVJEkeXh46NKlS5bsBwAAAACAgqBAzdlQrFgxlShRQu+8845Kly6tI0eOaMSIETn6+fj4qEePHho9erSSkpLUu3dvx7qyZcvKw8NDb7zxhvr376/du3fr+eefd9p+7NixOnfunDp16qTw8HClpqbq9ddfV2ZmpmNuhTFjxqht27YqX768evXqpYsXL2rp0qU53oSRG+PHj1eJEiUUHBys5557TiVLllSPHj0kXQ45zpw5o4SEBNWsWVPe3t7y9vbO8z4AAAAAACgoCsSdDVlZWXJ3d5ebm5vmzZunbdu2qXr16nrqqac0ZcqUq24TGxurHTt2qHnz5ipbtqyjPSgoSLNnz9aCBQtUtWpVTZo0SVOnTnXatmXLljpw4IDi4uJUuXJldezYUceOHdPXX3+tSpUqSZJatWqlBQsWaPHixapVq5batGmjzZs339DxTZo0SU8++aTq1q2rY8eO6csvv5SHh4eky6/y7N+/v3r27KmgoCBNnjz5hvYBAAAAAEBBYTNXvkPSRTp06KAKFSrozTffdHUpllq9erVat26tP/74Q4GBgZaPn56eroCAANUcOENF7H8/xwQAAAAAoGDZNiXO1SXkSfb30LS0tOvOI+jSOxv++OMPLVmyRKtXr1a7du1cWQoAAAAAALCIS+ds6Nu3r7Zs2aKhQ4eqe/furiwFAAAAAABYxKVhQ/YrKW9XrVq1UgF4SgUAAAAAgFuqQEwQCQAAAAAAbh+EDQAAAAAAwFKEDQAAAAAAwFKEDQAAAAAAwFKEDQAAAAAAwFKEDQAAAAAAwFKEDQAAAAAAwFKEDQAAAAAAwFLuri4AN2/tC73l7+/v6jIAAAAAAJDEnQ0AAAAAAMBihA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBS7q4uADevxaiPVcTu5eoyAAAAAOAfZduUOFeXUGBxZwMAAAAAALAUYQMAAAAAALAUYQMAAAAAALAUYQMAAAAAALAUYQMAAAAAALAUYQMAAAAAALAUYQMAAAAAALAUYQMAAAAAALAUYQMAAAAAALAUYQMAAAAAALAUYQMAAAAAALAUYQMAAAAAALAUYQMAAAAAALAUYYOk+Ph49ejRI0f76tWrZbPZ1KNHD9lstmsuERERkqRWrVrJZrNp0qRJOcbq3LmzbDabxo4d62hr1aqVBg8enD8HBQAAAACAixA25MJrr72mlJQUxyJJs2bNcnzesmWLo29YWJhmz57ttP3Ro0eVkJCg0qVL38qyAQAAAABwCcKGXAgICFBISIhjkaTAwEDH56CgIEffLl266Pfff9eGDRscbXPmzFH79u1VqlSpW147AAAAAAC3GmGDxTw8PBQbG6tZs2Y52mbPnq2+ffve9NgZGRlKT093WgAAAAAAKGgIG/6fJUuWyNfX12np2LHjDY3Vt29fffLJJzp79qzWrl2rtLQ0denS5aZrnDhxogICAhxLWFjYTY8JAAAAAIDVCBv+n9atWysxMdFpmTlz5g2NVbNmTUVFRWnhwoV677339OCDD8rd3f2maxw5cqTS0tIcS3Jy8k2PCQAAAACA1W7+G/BtwsfHRxUqVHBq+9///nfD4/Xt21fTpk3Tnj17tHnz5pstT5Jkt9tlt9stGQsAAAAAgPzCnQ355P7779euXbtUvXp1Va1a1dXlAAAAAABwy3BnQz4pVqyYUlJSVLRo0ev2++2335SYmOjUVrp0aQUHB+djdQAAAAAA5B/ubMhHgYGB8vHxuW6fuXPnqnbt2k7Lu+++e4sqBAAAAADAejZjjHF1Ebgx6enpCggIUM2BM1TE7uXqcgAAAADgH2XblDhXl3DLZX8PTUtLk7+//zX7cWcDAAAAAACwFGEDAAAAAACwFGEDAAAAAACwFGEDAAAAAACwFGEDAAAAAACwFGEDAAAAAACwFGEDAAAAAACwFGEDAAAAAACwFGEDAAAAAACwFGEDAAAAAACwFGEDAAAAAACwFGEDAAAAAACwlLurC8DNW/tCb/n7+7u6DAAAAAAAJHFnAwAAAAAAsBhhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsJS7qwvAzWsx6mMVsXu5ugwAAAAAuGnbpsS5ugRYgDsbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbbtCxY8c0cOBARUZGym63KywsTF27dlVCQoIkaceOHerWrZtKlSolT09PRUREqGfPnjpx4oRjjEWLFqlRo0YKCAiQn5+fqlWrpsGDB7voiAAAAAAAsIa7qwsojA4dOqSmTZsqMDBQU6ZMUY0aNZSZmakVK1ZowIABWrdundq2basuXbpoxYoVCgwM1KFDh7R48WKdPXtWkpSQkKCePXtqwoQJ6tatm2w2m/bs2aOVK1e6+OgAAAAAALg5NmOMcXURhU2nTp20c+dO7d27Vz4+Pk7rUlNTtXr1at177706f/683N2vnucMHjxYO3bs0KpVq264jvT0dAUEBKjmwBkqYve64XEAAAAAoKDYNiXO1SXgOrK/h6alpcnf3/+a/XiMIo9OnTql5cuXa8CAATmCBkkKDAxUSEiILl68qEWLFulaWU5ISIh+/PFH7d69O9f7zsjIUHp6utMCAAAAAEBBQ9iQR/v375cxRpUrV75mn0aNGunZZ5/V/fffr5IlS6pjx46aMmWKjh8/7ugzcOBA1a9fXzVq1FBERIR69eql9957TxkZGdccd+LEiQoICHAsYWFhlh4bAAAAAABWIGzIo9w+dTJhwgQdO3ZMM2bMULVq1TRjxgxVrlxZu3btkiT5+Pjoq6++0v79+zVq1Cj5+vpq6NChatCggc6dO3fVMUeOHKm0tDTHkpycbNlxAQAAAABgFcKGPIqKipLNZtNPP/30t31LlCihe++9V1OnTlVSUpJCQ0M1depUpz7ly5dXv379NHPmTG3fvl179uzR/Pnzrzqe3W6Xv7+/0wIAAAAAQEFD2JBHxYsXV0xMjKZNm+Z4s8SVUlNTr7qdh4eHypcvf9VtskVERMjb2/u6fQAAAAAAKOh49eUNmDZtmpo2baoGDRpo/Pjxio6O1sWLF7Vy5UpNnz5dU6ZM0bx589SrVy9VrFhRxhh9+eWXWrp0qWbNmiVJGjt2rM6dO6dOnTopPDxcqampev3115WZmak777zTxUcIAAAAAMCNI2y4AZGRkdq+fbsmTJigoUOHKiUlRUFBQapbt66mT5+usmXLytvbW0OHDlVycrLsdruioqI0c+ZMPfjgg5Kkli1batq0aYqLi9Px48dVrFgx1a5dW19//bUqVark4iMEAAAAAODG2UxuZzxEgZP9ftOaA2eoiN3L1eUAAAAAwE3bNiXO1SXgOrK/h6alpV13HkHmbAAAAAAAAJYibAAAAAAAAJYibAAAAAAAAJYibAAAAAAAAJYibAAAAAAAAJYibAAAAAAAAJYibAAAAAAAAJYibAAAAAAAAJYibAAAAAAAAJYibAAAAAAAAJYibAAAAAAAAJYibAAAAAAAAJZyd3UBuHlrX+gtf39/V5cBAAAAAIAk7mwAAAAAAAAWI2wAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWcnd1Abh5LUZ9rCJ2L1eXAQAAABQq26bEuboE4LbFnQ0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA034LffftO///1vlS1bVna7XSEhIYqJidGGDRscfb777jt16tRJxYoVk6enp2rUqKGXX35Zly5dchrLZrPp888/v8VHAAAAAABA/nF3dQGF0d13360///xTc+bMUWRkpI4fP66EhASdPHlSkrRo0SLdd999euihh7Rq1SoFBgbqm2++0dNPP62NGzfqk08+kc1mc/FRAAAAAACQPwgb8ig1NVXr1q3T6tWr1bJlS0lSeHi4GjRoIEk6e/asHnnkEXXr1k3vvPOOY7t+/fopODhY3bp10yeffKKePXvmed8ZGRnKyMhwfE5PT7/JowEAAAAAwHo8RpFHvr6+8vX11eeff+70xT/b119/rZMnT2rYsGE51nXt2lUVK1bUxx9/fEP7njhxogICAhxLWFjYDY0DAAAAAEB+ImzII3d3d82ePVtz5sxRYGCgmjZtqmeffVY7d+6UJP3888+SpCpVqlx1+8qVKzv65NXIkSOVlpbmWJKTk2/sIAAAAAAAyEeEDTfg7rvv1q+//qrFixerQ4cOWr16terUqaPZs2c7+hhjrrm9h4fHDe3XbrfL39/faQEAAAAAoKAhbLhBnp6euvPOOzV69Gh99913io+P15gxYxQVFSVJSkpKuup2SUlJqlix4q0sFQAAAACAW4qwwSJVq1bV2bNnFRMTo+LFi+ull17K0Wfx4sXat2+f4uPjb32BAAAAAADcIryNIo9Onjype++9V3379lV0dLT8/Py0detWTZ48Wd27d5ePj4/efvtt9erVS48++qieeOIJ+fv7KyEhQcOHD9cjjzyiTp06OY158OBBJSYmOrVFRUXJx8fnFh4ZAAAAAADWIGzII19fXzVs2FCvvPKKfvnlF2VmZiosLEyPPPKInn32WUnSPffco1WrVmnChAlq3ry54xWVL774op5++ukcYw4ZMiRH27p169SsWbP8PRgAAAAAAPKBzVxvJkNY4sKFC+revbuSk5O1Zs0aBQUFWTJuenq6AgICVHPgDBWxe1kyJgAAAPBPsW1KnKtLAAqd7O+haWlp131pAXM23AKenp764osvFBcXp7Vr17q6HAAAAAAA8hWPUdwinp6eGjFihKvLAAAAAAAg33FnAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsJS7qwvAzVv7Qm/5+/u7ugwAAAAAACRxZwMAAAAAALAYYQMAAAAAALAUYQMAAAAAALAUYQMAAAAAALAUYQMAAAAAALAUYQMAAAAAALAUYQMAAAAAALAUYQMAAAAAALCUu6sLwM1rMepjFbF7uboMAACAfLdtSpyrSwAA5AJ3NgAAAAAAAEsRNgAAAAAAAEsRNgAAAAAAAEvlOWw4cOBAftQBAAAAAABuE3kOGypUqKDWrVvrww8/1IULF/KjJgAAAAAAUIjlOWzYvn27oqOjNWTIEIWEhOixxx7T5s2b86M2AAAAAABQCOU5bKhVq5Zee+01/frrr3rvvfeUkpKiZs2aqXr16nr55Zf122+/5UedAAAAAACgkLjhCSLd3d31r3/9SwsWLNCLL76o/fv3a9iwYQoLC1NcXJxSUlKsrBMAAAAAABQSNxw2bN26VY8//rhKly6tl19+WcOGDdMvv/yilStX6tdff1X37t2trBMAAAAAABQS7nnd4OWXX9asWbO0d+9ederUSe+//746deokN7fLuUW5cuU0e/ZsRUREWF0rAAAAAAAoBPIcNkyfPl19+/ZVfHy8SpcufdU+pUqV0v/93//ddHEAAAAAAKDwyXPYsG/fvr/t4+HhoT59+txQQQAAAAAAoHDLc9iwc+fOq7bbbDZ5enqqbNmystvtN10YAAAAAAAonPIcNtSqVUs2m+2a64sWLaqePXvq7bfflqen500VBwAAAAAACp88v41i0aJFioqK0jvvvKPExEQlJibqnXfeUaVKlTR37lz93//9n7799luNGjUqP+p1mfj4ePXo0cPVZQAAAAAAUODl+c6GCRMm6LXXXlNMTIyjrUaNGipTpoxGjx6tzZs3y8fHR0OHDtXUqVMtLRYAAAAAABR8eb6zYdeuXQoPD8/RHh4erl27dkm6/KhFSkrKzVdXQC1fvlzNmjVTYGCgSpQooS5duuiXX35xrG/SpImeeeYZp21+++03FS1aVGvXrpUkffDBB6pXr578/PwUEhKi+++/XydOnLilxwEAAAAAQH7Ic9hQuXJlTZo0SX/++aejLTMzU5MmTVLlypUlSUePHlVwcLB1VRYwZ8+e1ZAhQ7R161YlJCTIzc1Nd911l7KysiRJsbGxmjdvnowxjm3mz5+v0NBQNW/eXNLlc/b8889rx44d+vzzz3Xo0CHFx8dfd78ZGRlKT093WgAAAAAAKGjy/BjFtGnT1K1bN5UpU0bR0dGSLt/tcOnSJS1ZskSSdODAAT3++OPWVlqA3H333U6f33vvPQUFBWnPnj2qXr267rvvPg0ePFjr1693hAtz585V7969HZNr9u3b17F9ZGSkXn/9ddWvX19nzpyRr6/vVfc7ceJEjRs3Lp+OCgAAAAAAa+T5zoYmTZro4MGDGj9+vKKjoxUdHa3x48fr4MGDatSokSTpwQcf1PDhwy0vtqDYt2+fevfurcjISPn7+ysiIkKSdOTIEUlSUFCQ2rdvr48++kiSdPDgQW3cuFGxsbGOMbZt26auXbuqbNmy8vPzU8uWLZ3GuJqRI0cqLS3NsSQnJ+fTEQIAAAAAcOPyfGeDJPn5+al///5W11JodO3aVeHh4Xr33XcVGhqqrKwsVa9e3enRktjYWA0aNEhvvPGG5s6dqxo1aqhGjRqSLj+GERMTo5iYGH300UcKCgrSkSNHFBMT4zTGX9ntdtnt9nw/PgAAAAAAbsYNhQ2//PKLXn31VSUlJUmSqlWrpkGDBql8+fKWFlcQnTx5Unv37tW7777reERi/fr1Ofp1795djz76qJYvX665c+cqLi7Ose6nn37SyZMnNWnSJIWFhUmStm7demsOAAAAAACAfJbnxyhWrFihqlWravPmzY7HKL7//ntVq1ZNK1euzI8aC5RixYqpRIkSeuedd7R//359++23GjJkSI5+Pj4+6tGjh0aPHq2kpCT17t3bsa5s2bLy8PDQG2+8oQMHDmjx4sV6/vnnb+VhAAAAAACQb/IcNowYMUJPPfWUNm3apJdfflkvv/yyNm3apMGDB+d43ePtJCsrS+7u7nJzc9O8efO0bds2Va9eXU899ZSmTJly1W1iY2O1Y8cONW/eXGXLlnW0BwUFafbs2VqwYIGqVq2qSZMmaerUqbfqUAAAAAAAyFc2c+X7GXPB09NTu3btUlRUlFP7zz//rOjoaF24cMHSAguKDh06qEKFCnrzzTddXYpDenq6AgICVHPgDBWxe7m6HAAAgHy3bUrc33cCAOSb7O+haWlp8vf3v2a/PN/ZEBQUpMTExBztiYmJKlWqVF6HK/D++OMPLVmyRKtXr1a7du1cXQ4AAAAAAAVenieIfOSRR/Too4/qwIEDatKkiSRpw4YNevHFF686d0Fh17dvX23ZskVDhw5V9+7dXV0OAAAAAAAFXp7DhtGjR8vPz08vvfSSRo4cKUkKDQ3V2LFjNWjQIMsLdLVFixa5ugQAAAAAAAqVPIcNNptNTz31lJ566imdPn1akuTn52d5YQAAAAAAoHDKc9hwJUIGAAAAAADwV7kKG2rXri2bzZarAbdv335TBQEAAAAAgMItV2FDjx498rkMAAAAAABwu8hV2DBmzJj8rgMAAAAAANwmbnjOhm3btikpKUmSVK1aNdWuXduyogAAAAAAQOGV57DhxIkT6tWrl1avXq3AwEBJUmpqqlq3bq158+YpKCjI6hoBAAAAAEAh4pbXDQYOHKjTp0/rxx9/1KlTp3Tq1Cnt3r1b6enpGjRoUH7UCAAAAAAAChGbMcbkZYOAgAB98803ql+/vlP75s2b1b59e6WmplpZH64jPT1dAQEBSktLk7+/v6vLAQAAAADc5nL7PTTPdzZkZWWpaNGiOdqLFi2qrKysvA4HAAAAAABuM3kOG9q0aaMnn3xSv/76q6Pt6NGjeuqpp9S2bVtLiwMAAAAAAIVPnsOGN998U+np6YqIiFD58uVVvnx5lStXTunp6XrjjTfyo0YAAAAAAFCI5PltFGFhYdq+fbu++eYb/fTTT5KkKlWqqF27dpYXBwAAAAAACp88TxCJgoMJIgEAAAAAt1Juv4fm+c4GSUpISFBCQoJOnDiRY1LI995770aGBAAAAAAAt4k8hw3jxo3T+PHjVa9ePZUuXVo2my0/6gIAAAAAAIVUnsOGGTNmaPbs2XrwwQfzox4AAAAAAFDI5Tls+PPPP9WkSZP8qAU3qMWoj1XE7uXqMgAAgIW2TYlzdQkAANywPL/6sl+/fpo7d25+1AIAAAAAAG4Deb6z4cKFC3rnnXf0zTffKDo6WkWLFnVa//LLL1tWHAAAAAAAKHzyHDbs3LlTtWrVkiTt3r3baR2TRQIAAAAAgDyHDatWrcqPOgAAAAAAwG0iz3M2AAAAAAAAXE+e72w4e/asJk2apISEBJ04cUJZWVlO6w8cOGBZcQAAAAAAoPDJc9jQr18/rVmzRg8++KBKly7NPA0AAAAAAMBJnsOGZcuW6auvvlLTpk3zox4AAAAAAFDI5XnOhmLFiql48eL5UQsAAAAAALgN5DlseP755/Wf//xH586dy496AAAAAABAIZerxyhq167tNDfD/v37FRwcrIiICBUtWtSp7/bt262tEAAAAAAAFCq5Cht69OiRz2UAAAAAAIDbRa7ChjFjxuR3HQAAAAAA4DaR5zkbtmzZok2bNuVo37Rpk7Zu3WpJUVaZPXu2AgMDLR939erVstlsSk1NvalxbDabPv/8c0nSoUOHZLPZlJiYeNP1AQAAAADgSnkOGwYMGKDk5OQc7UePHtWAAQPyNFZ8fLxsNptjKVGihDp06KCdO3fmtaybNm7cOD3wwAOSpB07dqhbt24qVaqUPD09FRERoZ49e+rEiRO3vC4AAAAAAAqbPIcNe/bsUZ06dXK0165dW3v27MlzAR06dFBKSopSUlKUkJAgd3d3denSJc/j3KwvvvhC3bp102+//aa2bduqePHiWrFihZKSkjRr1iyFhobq7Nmzt7wuAAAAAAAKmzyHDXa7XcePH8/RnpKSInf3XE0BkWO8kJAQhYSEqFatWhoxYoSSk5P122+/SZKeeeYZVaxYUd7e3oqMjNTo0aOVmZnp2H7Hjh1q3bq1/Pz85O/vr7p16+Z4nGPFihWqUqWKfH19HeHGlZKTk/Xjjz+qQ4cO2rBhg9LS0jRz5kzVrl1b5cqVU+vWrfXKK6+oXLlyTttt27ZN9erVk7e3t5o0aaK9e/c6rf/iiy9Up04deXp6KjIyUuPGjdPFixfzfI4AAAAAAChM8hw2tG/fXiNHjlRaWpqjLTU1Vc8++6zuvPPOmyrmzJkz+vDDD1WhQgWVKFFCkuTn56fZs2drz549eu211/Tuu+/qlVdecWwTGxurMmXKaMuWLdq2bZtGjBjh9DrOc+fOaerUqfrggw+0du1aHTlyRMOGDXPa7+LFi9WqVSv5+/srJCREFy9e1KJFi2SMuW69zz33nF566SVt3bpV7u7u6tu3r2PdunXrFBcXpyeffFJ79uzR22+/rdmzZ2vChAk3fH4yMjKUnp7utAAAAAAAUNDk+VaEqVOnqkWLFgoPD1ft2rUlSYmJiQoODtYHH3yQ5wKWLFkiX19fSdLZs2dVunRpLVmyRG5ul3OQUaNGOfpGRERo2LBhmjdvnp5++mlJ0pEjRzR8+HBVrlxZkhQVFeU0fmZmpmbMmKHy5ctLkp544gmNHz/eqc8XX3yh7t27S5IaNWqkZ599Vvfff7/69++vBg0aqE2bNoqLi1NwcLDTdhMmTFDLli0lSSNGjFDnzp114cIFeXp6aty4cRoxYoT69OkjSYqMjNTzzz+vp59++obf7jFx4kSNGzfuhrYFAAAAAOBWyfOdDXfccYd27typyZMnq2rVqqpbt65ee+017dq1S2FhYXkuoHXr1kpMTFRiYqI2b96smJgYdezYUYcPH5YkzZ8/X02bNlVISIh8fX01atQoHTlyxLH9kCFD1K9fP7Vr106TJk3SL7/84jS+t7e3I2iQpNKlSztN9Jienq41a9aoW7dujrYJEybo2LFjmjFjhqpVq6YZM2aocuXK2rVrl9PY0dHRTuNKcoy9Y8cOjR8/Xr6+vo7lkUceUUpKis6dO5fn8yTJcUdJ9nK1iToBAAAAAHC1vE+yIMnHx0ePPvqoJQX4+PioQoUKjs8zZ85UQECA3n33XXXu3FmxsbEaN26cYmJiFBAQoHnz5umll15y9B87dqzuv/9+ffXVV1q2bJnGjBmjefPm6a677pIkp0cqpMuvm7zy8Yhly5apatWqOYKSEiVK6N5779W9996r//73v6pdu7amTp2qOXPmOPpcObbNZpMkZWVlSbr8SMi4ceP0r3/9K8cxe3p65vk8SZfnt7Db7Te0LQAAAAAAt8oNhQ0ffPCB3n77bR04cEAbN25UeHi4XnnlFUVGRjoeR7hRNptNbm5uOn/+vL777juFh4frueeec6zPvuPhShUrVlTFihX11FNPqXfv3po1a5YjbPg7Vz5CcS0eHh4qX758nt5GUadOHe3du9cpSAEAAAAA4J8gz49RTJ8+XUOGDFHHjh31xx9/6NKlS5KkYsWK6dVXX81zARkZGTp27JiOHTumpKQkDRw4UGfOnFHXrl0VFRWlI0eOaN68efrll1/0+uuva9GiRY5tz58/ryeeeEKrV6/W4cOHtWHDBm3ZskVVqlTJ1b4vXryoZcuWOT1CsWTJEj3wwANasmSJfv75Z+3du1dTp07V0qVL8xSk/Oc//9H777+vcePG6ccff1RSUpLmzZvnNAcFAAAAAAC3ozzf2fDGG2/o3XffVY8ePTRp0iRHe7169XK85SE3li9f7pjvwM/PT5UrV9aCBQvUqlUrSdJTTz2lJ554QhkZGercubNGjx6tsWPHSpKKFCmikydPKi4uTsePH1fJkiX1r3/9K9eTKK5Zs0a+vr6qU6eOo61q1ary9vbW0KFDlZycLLvdrqioKM2cOVMPPvhgro8rJiZGS5Ys0fjx4/Xiiy+qaNGiqly5svr165frMQAAAAAAKIxs5u/e7/gXXl5e+umnnxQeHi4/Pz/t2LFDkZGR2rdvn6Kjo3X+/Pn8qtVygwYN0sWLF/XWW2+5upQbkp6eroCAANUcOENF7F6uLgcAAFho25Q4V5cAAEAO2d9D09LS5O/vf81+eb6zoVy5ckpMTFR4eLhT+/Lly3P9+EJBUb16dTVu3NjVZQAAAAAAcFvJddgwfvx4DRs2TEOGDNGAAQN04cIFGWO0efNmffzxx5o4caJmzpyZn7Vazqo3agAAAAAAgP9frsOGcePGqX///urXr5+8vLw0atQonTt3Tvfff79CQ0P12muvqVevXvlZKwAAAAAAKARyHTZcObVDbGysYmNjde7cOZ05c0alSpXKl+IAAAAAAEDhk6c5G2w2m9Nnb29veXt7W1oQAAAAAAAo3PIUNlSsWDFH4PBXp06duqmCAAAAAABA4ZansGHcuHEKCAjIr1oAAAAAAMBtIE9hQ69evZifAQAAAAAAXJdbbjv+3eMTAAAAAAAAUh7ChivfRgEAAAAAAHAtuX6MIisrKz/rAAAAAAAAt4k8zdmAgmntC73l7+/v6jIAAAAAAJCUh8coAAAAAAAAcoOwAQAAAAAAWIqwAQAAAAAAWIqwAQAAAAAAWIqwAQAAAAAAWIqwAQAAAAAAWIqwAQAAAAAAWIqwAQAAAAAAWIqwAQAAAAAAWMrd1QXg5rUY9bGK2L1cXQYAALiKbVPiXF0CAAC3HHc2AAAAAAAASxE2AAAAAAAASxE2AAAAAAAASxE2AAAAAAAASxE2AAAAAAAASxE2AAAAAAAASxE2AAAAAAAASxE2AAAAAAAASxE2AAAAAAAASxE2AAAAAAAASxE2AAAAAAAASxE2AAAAAAAASxE25FF8fLx69Ojh6jIAAAAAACiwbuuwIT4+XjabTTabTR4eHqpQoYLGjx+vixcv/u22hw4dks1mU2JiYv4XCgAAAADAbcTd1QXktw4dOmjWrFnKyMjQ0qVLNWDAABUtWlQjR450dWkAAAAAANyWbus7GyTJbrcrJCRE4eHh+ve//6127drpk08+kb+/vxYuXOjU9/PPP5ePj49Onz6tcuXKSZJq164tm82mVq1aOfWdOnWqSpcurRIlSmjAgAHKzMx0rPvjjz8UFxenYsWKydvbWx07dtS+ffsc62fPnq3AwECtWLFCVapUka+vrzp06KCUlJT8OxEAAAAAANwit33Y8FdeXl5yc3NTr169NGvWLKd1s2bN0j333CM/Pz9t3rxZkvTNN98oJSVFn332maPfqlWr9Msvv2jVqlWaM2eOZs+erdmzZzvWx8fHa+vWrVq8eLE2btwoY4w6derkFEicO3dOU6dO1QcffKC1a9fqyJEjGjZs2HVrz8jIUHp6utMCAAAAAEBB848JG4wx+uabb7RixQq1adNG/fr104oVKxx3E5w4cUJLly5V3759JUlBQUGSpBIlSigkJETFixd3jFWsWDG9+eabqly5srp06aLOnTsrISFBkrRv3z4tXrxYM2fOVPPmzVWzZk199NFHOnr0qD7//HPHGJmZmZoxY4bq1aunOnXq6IknnnCMcS0TJ05UQECAYwkLC7PyFAEAAAAAYInbPmxYsmSJfH195enpqY4dO6pnz54aO3asGjRooGrVqmnOnDmSpA8//FDh4eFq0aLF345ZrVo1FSlSxPG5dOnSOnHihCQpKSlJ7u7uatiwoWN9iRIlVKlSJSUlJTnavL29Vb58+auOcS0jR45UWlqaY0lOTs7dSQAAAAAA4Ba67cOG1q1bKzExUfv27dP58+c1Z84c+fj4SJL69evnePxh1qxZeuihh2Sz2f52zKJFizp9ttlsysrKylNdVxvDGHPdbex2u/z9/Z0WAAAAAAAKmts+bPDx8VGFChVUtmxZubs7v3zjgQce0OHDh/X6669rz5496tOnj2Odh4eHJOnSpUt52l+VKlV08eJFbdq0ydF28uRJ7d27V1WrVr2JIwEAAAAAoHC47cOG6ylWrJj+9a9/afjw4Wrfvr3KlCnjWFeqVCl5eXlp+fLlOn78uNLS0nI1ZlRUlLp3765HHnlE69ev144dO/TAAw/ojjvuUPfu3fPrUAAAAAAAKDD+0WGDJD388MP6888/HRNDZnN3d9frr7+ut99+W6GhoXkKCmbNmqW6deuqS5cuaty4sYwxWrp0aY5HJwAAAAAAuB3ZzN9NFHCb++CDD/TUU0/p119/dTw6UVikp6crICBANQfOUBG7l6vLAQAAV7FtSpyrSwAAwDLZ30PT0tKuO4+g+zXX3ObOnTunlJQUTZo0SY899lihCxoAAAAAACio/rGPUUyePFmVK1dWSEiIRo4c6epyAAAAAAC4bfxjw4axY8cqMzNTCQkJ8vX1dXU5AAAAAADcNv6xYQMAAAAAAMgfhA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBS7q4uADdv7Qu95e/v7+oyAAAAAACQxJ0NAAAAAADAYoQNAAAAAADAUoQNAAAAAADAUoQNAAAAAADAUoQNAAAAAADAUoQNAAAAAADAUoQNAAAAAADAUoQNAAAAAADAUu6uLgA3r8Woj1XE7uXqMgAAuGHbpsS5ugQAAGAh7mwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImyw0LFjxzRw4EBFRkbKbrcrLCxMXbt2VUJCQo6+CxYsUJMmTSRJ3333nSIjI291uQAAAAAA5At3Vxdwuzh06JCaNm2qwMBATZkyRTVq1FBmZqZWrFihAQMG6KeffnLqv3HjRjVt2lSStG7dOsd/AwAAAABQ2BE2WOTxxx+XzWbT5s2b5ePj42ivVq2a+vbtm6P/d999pxEjRkiS1q9fr86dO9+yWgEAAAAAyE88RmGBU6dOafny5RowYIBT0JAtMDBQkjR37lwFBgYqMDBQmzdv1oMPPqjAwEAtXbpUw4YNU2BgoObOnXvN/WRkZCg9Pd1pAQAAAACgoCFssMD+/ftljFHlypWv269bt25KTEzU1KlTVbVqVe3atUvvv/++goODtXv3biUmJqpbt27X3H7ixIkKCAhwLGFhYVYfCgAAAAAAN42wwQLGmFz18/X1VUREhLZv367u3bsrIiJCu3btUqdOnRQREaGIiAj5+vpec/uRI0cqLS3NsSQnJ1t1CAAAAAAAWIY5GywQFRUlm82WYxLIKx05ckRVq1aVJF24cEHu7u567bXXlJGRITc3N82bN08PPPCAZsyYcc0x7Ha77Ha75fUDAAAAAGAlwgYLFC9eXDExMZo2bZoGDRqUY96G1NRUhYaGKjExUceOHVO7du2UmJioS5cuqVatWlq3bp2KFy8uf39/Fx0BAAAAAADW4TEKi0ybNk2XLl1SgwYN9Omnn2rfvn1KSkrS66+/rsaNG8vd3V0VKlTQ//73PzVs2FCVK1fWyZMnFRkZqQYNGqhChQoqVaqUqw8DAAAAAICbxp0NFomMjNT27ds1YcIEDR06VCkpKQoKClLdunU1ffp0R7/Vq1erRYsWkqQ1a9Y4/hsAAAAAgNuFzeR2dkMUOOnp6QoICFDNgTNUxO7l6nIAALhh26bEuboEAACQC9nfQ9PS0q47FQCPUQAAAAAAAEsRNgAAAAAAAEsRNgAAAAAAAEsRNgAAAAAAAEsRNgAAAAAAAEsRNgAAAAAAAEsRNgAAAAAAAEsRNgAAAAAAAEsRNgAAAAAAAEsRNgAAAAAAAEsRNgAAAAAAAEsRNgAAAAAAAEu5u7oA3Ly1L/SWv7+/q8sAAAAAAEASdzYAAAAAAACLETYAAAAAAABLETYAAAAAAABLETYAAAAAAABLETYAAAAAAABLETYAAAAAAABLETYAAAAAAABLETYAAAAAAABLubu6ANy8FqM+VhG7l6vLAAAUANumxLm6BAAAAO5sAAAAAAAA1iJsAAAAAAAAliJsAAAAAAAAliJsAAAAAAAAliJsAAAAAAAAliJsAAAAAAAAliJsAAAAAAAAliJsAAAAAAAAliJsAAAAAAAAliJsAAAAAAAAliJsAAAAAAAAliJsAAAAAAAAliJsAAAAAAAAliJsAAAAAAAAliJsyKP4+HjZbDbZbDZ5eHioQoUKGj9+vC5evKjVq1fLZrMpNTU1x3YRERF69dVXnT5nj+Pj46M6depowYIFt+5AAAAAAADIJ4QNN6BDhw5KSUnRvn37NHToUI0dO1ZTpkzJ8zjjx49XSkqKfvjhB9WvX189e/bUd999lw8VAwAAAABw6xA23AC73a6QkBCFh4fr3//+t9q1a6fFixfneRw/Pz+FhISoYsWKmjZtmry8vPTll19es39GRobS09OdFgAAAAAAChrCBgt4eXnpzz//vKkx3N3dVbRo0euOM3HiRAUEBDiWsLCwm9onAAAAAAD5gbDhJhhj9M0332jFihVq06aNo71MmTLy9fV1Wo4cOXLNcf78809NnDhRaWlpTuP81ciRI5WWluZYkpOTLT0eAAAAAACs4O7qAgqjJUuWyNfXV5mZmcrKytL999+vsWPHasuWLZKkdevWyc/Pz2mbVq1a5RjnmWee0ahRo3ThwgX5+vpq0qRJ6ty58zX3a7fbZbfbLT0WAAAAAACsRthwA1q3bq3p06fLw8NDoaGhcnd3Po3lypVTYGCgU9tf+0jS8OHDFR8fL19fXwUHB8tms+Vn2QAAAAAA3BKEDTfAx8dHFSpUuOlxSpYsack4AAAAAAAUJMzZAAAAAAAALEXYAAAAAAAALMVjFHk0e/bsa65r1aqVjDFXXXfo0KHrfgYAAAAA4HbBnQ0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBShA0AAAAAAMBS7q4uADdv7Qu95e/v7+oyAAAAAACQxJ0NAAAAAADAYoQNAAAAAADAUoQNAAAAAADAUoQNAAAAAADAUoQNAAAAAADAUoQNAAAAAADAUoQNAAAAAADAUoQNAAAAAADAUu6uLgA3r8Woj1XE7uXqMgDAJbZNiXN1CQAAAPgL7mwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImz4G8eOHdPAgQMVGRkpu92usLAwde3aVQkJCa4uDQAAAACAAomw4ToOHTqkunXr6ttvv9WUKVO0a9cuLV++XK1bt9aAAQOuuo3NZtOhQ4dyNf7s2bPVqlUr6woGAAAAAKAAcHd1AQXZ448/LpvNps2bN8vHx8fRXq1aNfXt29eFlQEAAAAAUHARNlzDqVOntHz5ck2YMMEpaMgWGBh4y2vKyMhQRkaG43N6evotrwEAAAAAgL/DYxTXsH//fhljVLlyZVeX4jBx4kQFBAQ4lrCwMFeXBAAAAABADoQN12CMyVW/jh07ytfX17FIlx+zyP5crVo1R98jR4449e3fv7/WrVvn1Pbf//73mvsaOXKk0tLSHEtycvLNHSQAAAAAAPmAxyiuISoqSjabTT/99NN1+82cOVPnz5932m7p0qW64447JElFixZ1rAsNDVViYqLj82effaZPP/1UH330kaOtePHi19yX3W6X3W7P66EAAAAAAHBLETZcQ/HixRUTE6Np06Zp0KBBOeZtSE1NVWBgoCNUuFJ4eLgiIiJytLu7u6tChQqOz6VKlZKXl5dTGwAAAAAAhR2PUVzHtGnTdOnSJTVo0ECffvqp9u3bp6SkJL3++utq3Lixq8sDAAAAAKBA4s6G64iMjNT27ds1YcIEDR06VCkpKQoKClLdunU1ffp0V5cHAAAAAECBZDO5nQkRBU56eroCAgJUc+AMFbF7ubocAHCJbVPiXF0CAADAP0b299C0tDT5+/tfsx+PUQAAAAAAAEsRNgAAAAAAAEsRNgAAAAAAAEsRNgAAAAAAAEsRNgAAAAAAAEsRNgAAAAAAAEsRNgAAAAAAAEsRNgAAAAAAAEsRNgAAAAAAAEsRNgAAAAAAAEsRNgAAAAAAAEu5u7oA3Ly1L/SWv7+/q8sAAAAAAEASdzYAAAAAAACLETYAAAAAAABLETYAAAAAAABLMWdDIWaMkSSlp6e7uBIAAAAAwD9B9vfP7O+j10LYUIidPHlSkhQWFubiSgAAAAAA/ySnT59WQEDANdcTNhRixYsXlyQdOXLkuj9kID+lp6crLCxMycnJvBUFLsN1iIKA6xAFAdchCgKuw9ubMUanT59WaGjodfsRNhRibm6Xp9wICAjgHzFczt/fn+sQLsd1iIKA6xAFAdchCgKuw9tXbv7YzQSRAAAAAADAUoQNAAAAAADAUoQNhZjdbteYMWNkt9tdXQr+wbgOURBwHaIg4DpEQcB1iIKA6xCSZDN/974KAAAAAACAPODOBgAAAAAAYCnCBgAAAAAAYCnCBgAAAAAAYCnCBgAAAAAAYCnChkJq2rRpioiIkKenpxo2bKjNmze7uiQUEmvXrlXXrl0VGhoqm82mzz//3Gm9MUb/+c9/VLp0aXl5ealdu3bat2+fU59Tp04pNjZW/v7+CgwM1MMPP6wzZ8449dm5c6eaN28uT09PhYWFafLkyTlqWbBggSpXrixPT0/VqFFDS5cutfx4UTBNnDhR9evXl5+fn0qVKqUePXpo7969Tn0uXLigAQMGqESJEvL19dXdd9+t48ePO/U5cuSIOnfuLG9vb5UqVUrDhw/XxYsXnfqsXr1aderUkd1uV4UKFTR79uwc9fA79Z9p+vTpio6Olr+/v/z9/dW4cWMtW7bMsZ5rELfapEmTZLPZNHjwYEcb1yFuhbFjx8pmszktlStXdqznOsQNMSh05s2bZzw8PMx7771nfvzxR/PII4+YwMBAc/z4cVeXhkJg6dKl5rnnnjOfffaZkWQWLVrktH7SpEkmICDAfP7552bHjh2mW7duply5cub8+fOOPh06dDA1a9Y033//vVm3bp2pUKGC6d27t2N9WlqaCQ4ONrGxsWb37t3m448/Nl5eXubtt9929NmwYYMpUqSImTx5stmzZ48ZNWqUKVq0qNm1a1e+nwO4XkxMjJk1a5bZvXu3SUxMNJ06dTJly5Y1Z86ccfTp37+/CQsLMwkJCWbr1q2mUaNGpkmTJo71Fy9eNNWrVzft2rUzP/zwg1m6dKkpWbKkGTlypKPPgQMHjLe3txkyZIjZs2ePeeONN0yRIkXM8uXLHX34nfrPtXjxYvPVV1+Zn3/+2ezdu9c8++yzpmjRomb37t3GGK5B3FqbN282ERERJjo62jz55JOOdq5D3Apjxowx1apVMykpKY7lt99+c6znOsSNIGwohBo0aGAGDBjg+Hzp0iUTGhpqJk6c6MKqUBj9NWzIysoyISEhZsqUKY621NRUY7fbzccff2yMMWbPnj1GktmyZYujz7Jly4zNZjNHjx41xhjz1ltvmWLFipmMjAxHn2eeecZUqlTJ8fm+++4znTt3dqqnYcOG5rHHHrP0GFE4nDhxwkgya9asMcZcvu6KFi1qFixY4OiTlJRkJJmNGzcaYy4HZ25ububYsWOOPtOnTzf+/v6Oa+/pp5821apVc9pXz549TUxMjOMzv1NxpWLFipmZM2dyDeKWOn36tImKijIrV640LVu2dIQNXIe4VcaMGWNq1qx51XVch7hRPEZRyPz555/atm2b2rVr52hzc3NTu3bttHHjRhdWhtvBwYMHdezYMafrKyAgQA0bNnRcXxs3blRgYKDq1avn6NOuXTu5ublp06ZNjj4tWrSQh4eHo09MTIz27t2rP/74w9Hnyv1k9+E6/mdKS0uTJBUvXlyStG3bNmVmZjpdI5UrV1bZsmWdrsUaNWooODjY0ScmJkbp6en68ccfHX2ud53xOxXZLl26pHnz5uns2bNq3Lgx1yBuqQEDBqhz5845rhWuQ9xK+/btU2hoqCIjIxUbG6sjR45I4jrEjSNsKGR+//13Xbp0yekfsiQFBwfr2LFjLqoKt4vsa+h619exY8dUqlQpp/Xu7u4qXry4U5+rjXHlPq7Vh+v4nycrK0uDBw9W06ZNVb16dUmXrw8PDw8FBgY69f3rtXij11l6errOnz/P71Ro165d8vX1ld1uV//+/bVo0SJVrVqVaxC3zLx587R9+3ZNnDgxxzquQ9wqDRs21OzZs7V8+XJNnz5dBw8eVPPmzXX69GmuQ9wwd1cXAAD4ZxswYIB2796t9evXu7oU/ANVqlRJiYmJSktL08KFC9WnTx+tWbPG1WXhHyI5OVlPPvmkVq5cKU9PT1eXg3+wjh07Ov47OjpaDRs2VHh4uD755BN5eXm5sDIUZtzZUMiULFlSRYoUyTH76/HjxxUSEuKiqnC7yL6Grnd9hYSE6MSJE07rL168qFOnTjn1udoYV+7jWn24jv9ZnnjiCS1ZskSrVq1SmTJlHO0hISH6888/lZqa6tT/r9fijV5n/v7+8vLy4ncq5OHhoQoVKqhu3bqaOHGiatasqddee41rELfEtm3bdOLECdWpU0fu7u5yd3fXmjVr9Prrr8vd3V3BwcFch3CJwMBAVaxYUfv37+f3IW4YYUMh4+Hhobp16yohIcHRlpWVpYSEBDVu3NiFleF2UK5cOYWEhDhdX+np6dq0aZPj+mrcuLFSU1O1bds2R59vv/1WWVlZatiwoaPP2rVrlZmZ6eizcuVKVapUScWKFXP0uXI/2X24jv8ZjDF64okntGjRIn377bcqV66c0/q6deuqaNGiTtfI3r17deTIEadrcdeuXU7h18qVK+Xv76+qVas6+lzvOuN3Kv4qKytLGRkZXIO4Jdq2batdu3YpMTHRsdSrV0+xsbGO/+Y6hCucOXNGv/zyi0qXLs3vQ9w4V89QibybN2+esdvtZvbs2WbPnj3m0UcfNYGBgU6zvwLXcvr0afPDDz+YH374wUgyL7/8svnhhx/M4cOHjTGXX30ZGBhovvjiC7Nz507TvXv3q776snbt2mbTpk1m/fr1JioqyunVl6mpqSY4ONg8+OCDZvfu3WbevHnG29s7x6sv3d3dzdSpU01SUpIZM2YMr778B/n3v/9tAgICzOrVq51es3Xu3DlHn/79+5uyZcuab7/91mzdutU0btzYNG7c2LE++zVb7du3N4mJiWb58uUmKCjoqq/ZGj58uElKSjLTpk276mu2+J36zzRixAizZs0ac/DgQbNz504zYsQIY7PZzNdff22M4RqEa1z5NgpjuA5xawwdOtSsXr3aHDx40GzYsMG0a9fOlCxZ0pw4ccIYw3WIG0PYUEi98cYbpmzZssbDw8M0aNDAfP/9964uCYXEqlWrjKQcS58+fYwxl19/OXr0aBMcHGzsdrtp27at2bt3r9MYJ0+eNL179za+vr7G39/fPPTQQ+b06dNOfXbs2GGaNWtm7Ha7ueOOO8ykSZNy1PLJJ5+YihUrGg8PD1OtWjXz1Vdf5dtxo2C52jUoycyaNcvR5/z58+bxxx83xYoVM97e3uauu+4yKSkpTuMcOnTIdOzY0Xh5eZmSJUuaoUOHmszMTKc+q1atMrVq1TIeHh4mMjLSaR/Z+J36z9S3b18THh5uPDw8TFBQkGnbtq0jaDCGaxCu8dewgesQt0LPnj1N6dKljYeHh7njjjtMz549zf79+x3ruQ5xI2zGGOOaeyoAAAAAAMDtiDkbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAABAoXLs2DENHDhQkZGRstvtCgsLU9euXZWQkHBL67DZbPr8889v6T4BACgs3F1dAAAAQG4dOnRITZs2VWBgoKZMmaIaNWooMzNTK1as0IABA/TTTz+5ukQAACDJZowxri4CAAAgNzp16qSdO3dq79698vHxcVqXmpqqwMBAHTlyRAMHDlRCQoLc3NzUoUMHvfHGGwoODpYkxcfHKzU11emuhMGDBysxMVGrV6+WJLVq1UrR0dHy9PTUzJkz5eHhof79+2vs2LGSpIiICB0+fNixfXh4uA4dOpSfhw4AQKHCYxQAAKBQOHXqlJYvX64BAwbkCBokKTAwUFlZWerevbtOnTqlNWvWaOXKlTpw4IB69uyZ5/3NmTNHPj4+2rRpkyZPnqzx48dr5cqVkqQtW7ZIkmbNmqWUlBTHZwAAcBmPUQAAgEJh//79MsaocuXK1+yTkJCgXbt26eDBgwoLC5Mkvf/++6pWrZq2bNmi+vXr53p/0dHRGjNmjCQpKipKb775phISEnTnnXcqKChI0uWAIyQk5CaOCgCA2xN3NgAAgEIhN09+JiUlKSwszBE0SFLVqlUVGBiopKSkPO0vOjra6XPp0qV14sSJPI0BAMA/FWEDAAAoFKKiomSz2W56Ekg3N7ccwUVmZmaOfkWLFnX6bLPZlJWVdVP7BgDgn4KwAQAAFArFixdXTEyMpk2bprNnz+ZYn5qaqipVqig5OVnJycmO9j179ig1NVVVq1aVJAUFBSklJcVp28TExDzXU7RoUV26dCnP2wEA8E9A2AAAAAqNadOm6dKlS2rQoIE+/fRT7du3T0lJSXr99dfVuHFjtWvXTjVq1FBsbKy2b9+uzZs3Ky4uTi1btlS9evUkSW3atNHWrVv1/vvva9++fRozZox2796d51oiIiKUkJCgY8eO6Y8//rD6UAEAKNQIGwAAQKERGRmp7du3q3Xr1ho6dKiqV6+uO++8UwkJCZo+fbpsNpu++OILFStWTC1atFC7du0UGRmp+fPnO8aIiYnR6NGj9fTTT6t+/fo6ffq04uLi8lzLSy+9pJUrVyosLEy1a9e28jABACj0bCY3sy0BAAAAAADkEnc2AAAAAAAASxE2AAAAAAAASxE2AAAAAAAASxE2AAAAAAAASxE2AAAAAAAASxE2AAAAAAAASxE2AAAAAAAASxE2AAAAAAAASxE2AAAAAAAASxE2AAAAAAAASxE2AAAAAAAAS/1/5W5lhGjWrXQAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Plot trends for languages desired next year\n", + "plot_technology_trends('LanguageDesireNextYear', 'Top 10 Languages Desired Next Year (2019)')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 564 + }, + "id": "RatzmSsog2wM", + "outputId": "4f4b9317-d8f1-4927-c403-a8d8f92a65ee" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCgAAAIjCAYAAADBfyoFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABq0klEQVR4nO3deVgV9f///8dB4CC7C4IkgrjhgruWmvuCu7aqWWamWZlpLqWluZRv11YzrXynlZZmn7dLm6bkllkqinvuW4YbCrgkLrx+f/jjfD2CCgoO4P12XXNdnpnXvOY5M5yD58FrZmzGGCMAAAAAAAALuVhdAAAAAAAAAAEFAAAAAACwHAEFAAAAAACwHAEFAAAAAACwHAEFAAAAAACwHAEFAAAAAACwHAEFAAAAAACwHAEFAAAAAACwHAEFAAAAAACwHAEFAADANQ4cOCCbzaYZM2bcle2FhYWpW7dud2VbSOvFF19Us2bNrC4j0y5duqSQkBB9/PHHVpcCAFmGgAIAcEs2my1D0/Lly7O9lilTpuixxx5T8eLFZbPZbvrFLiEhQc8995wCAgLk5eWlRo0aacOGDRnaTsOGDVWxYsUsqhqZde3PlaurqwoWLKjq1aurb9++2r59u9XlWSL1eLzzzjtpls2YMUM2m03r16/Ptu1//fXXev/992/Zbs2aNXJxcdGQIUPSXT5u3DjZbDb9+OOPWVxh5u3fv1/Tpk3T66+/7ph3+PBhjRw5UrVq1VKBAgVUuHBhNWzYUEuXLk23j4x+zsyZM0dPPvmkSpcuLZvNpoYNG96wrpiYGLVo0UK+vr7y8fFR8+bNFRsb69TGzc1N/fv31+jRo3XhwoXb2n8AyGlsxhhjdREAgJxt5syZTq+//PJLLVmyRF999ZXT/GbNmikwMDBbawkLC9OZM2dUq1YtLV26VF26dEn3L90pKSmqV6+eNm3apEGDBqlw4cL6+OOPdfjwYcXExKh06dI33U7Dhg118uRJbd26NZv2BDdjs9nUrFkzde3aVcYYJSYmatOmTZo7d67OnTuncePGqX///tmybWOMkpOT5ebmpnz58mXLNq4VFhamhg0b3nLEhs1mkyQFBgZq37598vT0dCybMWOGnnnmGa1bt041atTIljrbtGmjrVu36sCBA7ds+8ILL+i///2vNm7cqAoVKjjmHzx4UOXLl1fr1q317bffZkudmdGvXz/9/PPP2rlzp2PeRx99pFdffVUdOnRQ3bp1dfnyZX355ZfasGGDPv/8cz3zzDOOtpn5nGnYsKFiYmJUs2ZNxcbGqlKlSumGuhs2bFDdunUVEhKiXr16KSUlRR9//LFOnTqltWvXqmzZso62CQkJCgwM1JQpU9S9e/fsOUgAcDcZAAAyqXfv3saqXyEHDhwwKSkpxhhjvLy8zNNPP51uuzlz5hhJZu7cuY55x48fN/7+/qZz58633E6DBg1MhQoVsqRmZJ4k07t37zTzT548aWrXrm0kmR9//NGCyv6fs2fPZkk/oaGhN/w5vpYkU6VKFSPJvPPOO07Lpk+fbiSZdevWZUlN6WndurUJDQ3NUNuEhARTtGhRU7duXcf71Rhj2rZta/z8/Mw///yTTVU6O3fu3A2XXbx40RQuXNgMHTrUaf7WrVvNiRMnnOZduHDBREREmGLFijnNz8znzKFDh8yVK1eMMcZUqFDBNGjQIN26WrVqZQoUKGBOnjzpmPfPP/8Yb29v8/DDD6dp36ZNG1OvXr0b7icA5CZc4gEAyBLnzp3TgAEDFBISIrvdrrJly2rixIky1w3Us9lseumllzRr1iyVLVtWHh4eql69ulauXJmh7YSGhjr+knwz3333nQIDA/Xwww875gUEBOjxxx/XggULlJycnLkdTMfmzZvVrVs3hYeHy8PDQ0FBQerevbvi4+Od2o0YMUI2m0179uxRt27d5O/vLz8/Pz3zzDM6f/68U9t///1XL7/8sgoXLiwfHx+1a9dOR44ckc1m04gRIxztunXrprCwsDQ1pW7rWtOnT1fjxo1VpEgR2e12lS9fXlOmTEmzbkpKikaMGKHg4GB5enqqUaNG2r59e7r3SEhISFC/fv0c57tUqVIaN26cUlJSnNrNnj1b1atXl4+Pj3x9fRUZGakPPvggA0c3fYUKFdLs2bPl6uqq0aNHOy1LTk7W8OHDVapUKdntdoWEhOjVV19Nc66XLFmiBx98UP7+/vL29lbZsmWdhvindw+Kbt26ydvbW3v37lWrVq3k4+OjLl26OI7b+++/rwoVKsjDw0OBgYHq1auXTp8+7bRdY4zefvttFStWzHF8t23blqn9r1u3rho3bqzx48fr33//vWX7v/76S48++qgKFiwoDw8P1ahRQwsXLnQsP378uAICAtSwYUOn9+qePXvk5eWljh07Srr61/8ff/xRBw8edFxqkt7PXyo/Pz998MEHWr16taZNmyZJmjdvnr7//nuNHTtWRYsWzfBxW7BggVq3bq3g4GDZ7XaVLFlSb731lq5cueLULvWyrJiYGNWvX1+enp5O5/V6v/32m06ePKmmTZs6za9QoYIKFy7sNM9ut6tVq1b6+++/debMGcf8zHzOhISEyMXl1v/1XrVqlZo2bapChQo55hUtWlQNGjTQDz/8oLNnzzq1b9asmX777TedOnXqln0DQE7nanUBAIDczxijdu3aadmyZXr22WdVpUoVLV68WIMGDdKRI0f03nvvObVfsWKF5syZo5dffll2u10ff/yxWrRoobVr12bZfR82btyoatWqpflCUKtWLX366afatWuXIiMj72gbS5Ys0b59+/TMM88oKChI27Zt06effqpt27bpjz/+SBMUPP744ypRooTGjBmjDRs2aNq0aSpSpIjGjRvnaNOtWzd9++23euqpp/TAAw9oxYoVat269R3VOWXKFFWoUEHt2rWTq6urvv/+e7344otKSUlR7969He2GDBmi8ePHq23btoqKitKmTZsUFRWV5vr28+fPq0GDBjpy5Ih69eql4sWL6/fff9eQIUMUFxfnuE/BkiVL1LlzZzVp0sSxjzt27NDq1avVt2/f296f4sWLq0GDBlq2bJmSkpLk6+urlJQUtWvXTr/99puee+45lStXTlu2bNF7772nXbt2af78+ZKkbdu2qU2bNqpUqZJGjRolu92uPXv2aPXq1bfc7uXLlxUVFaUHH3xQEydOdFxi0atXL8clFi+//LL279+vjz76SBs3btTq1avl5uYmSXrzzTf19ttvq1WrVmrVqpU2bNig5s2b6+LFi5na/xEjRqh+/fqaMmXKTS9z2bZtm+rWrav77rtPgwcPlpeXl7799lt16NBB//d//6eHHnpIRYoUcdzXZdKkSXr55ZeVkpKibt26ycfHx3EDxjfeeEOJiYn6+++/He9nb2/vm9b52GOPqXXr1nrttdfUpEkT9e3bV3Xq1FGvXr0yddxmzJghb29v9e/fX97e3vr111/15ptvKikpSRMmTHDaZnx8vFq2bKlOnTrpySefvOklZ7///rtsNpuqVq1664Mu6ejRo/L09HS6tCY7PmeSk5OVP3/+NPM9PT118eJFbd26VQ888IBjfvXq1WWM0e+//642bdpkalsAkONYOn4DAJArXX+Jx/z5840k8/bbbzu1e/TRR43NZjN79uxxzJNkJJn169c75h08eNB4eHiYhx56KFN13OwSDy8vL9O9e/c083/88UcjySxatOimfWfkEo/z58+nmffNN98YSWblypWOecOHDzeS0tTz0EMPmUKFCjlex8TEGEmmX79+Tu26detmJJnhw4c75j399NPpDrdP3dat6oyKijLh4eGO10ePHjWurq6mQ4cOTu1GjBhhJDkd57feest4eXmZXbt2ObUdPHiwyZcvnzl06JAxxpi+ffsaX19fc/ny5TTbvxXd4BKPVH379jWSzKZNm4wxxnz11VfGxcXFrFq1yqnd1KlTjSSzevVqY4wx7733npGUZgj/tfbv328kmenTpzvmPf3000aSGTx4sFPbVatWGUlm1qxZTvMXLVrkNP/48ePG3d3dtG7d2umSh9dffz3N8b2Ra49Jo0aNTFBQkOPcpneJR5MmTUxkZKS5cOGCY15KSoqpU6eOKV26tFPfnTt3Np6enmbXrl1mwoQJRpKZP3++U5vMXOKR6sCBA8bLy8sULFjQuLm5mS1bthhjMn7cjEn/57dXr17G09PTad8aNGhgJJmpU6dmqLYnn3zS6f13M7t37zYeHh7mqaeecpp/u58zN7vEIzIy0pQpU8bpfZOcnGyKFy9uJJnvvvvOqf0///xjJJlx48ZlaF8AICfjEg8AwB376aeflC9fPr388stO8wcMGCBjjH7++Wen+bVr11b16tUdr4sXL6727dtr8eLFaYZt365///1Xdrs9zXwPDw/H8jt17V85L1y4oJMnTzr+spneXfyff/55p9f16tVTfHy8kpKSJEmLFi2SdPWxh9fq06dPltWZmJiokydPqkGDBtq3b58SExMlSdHR0bp8+XKGtj137lzVq1dPBQoU0MmTJx1T06ZNdeXKFcflOv7+/jp37pyWLFlyR/WnJ/Wv96nD7efOnaty5copIiLCqabGjRtLkpYtW+aoSbp62cD1l6NkxAsvvOD0eu7cufLz81OzZs2ctlu9enV5e3s7trt06VJdvHhRffr0cRpZ069fv0zXIF0dRXH06FFNnTo13eWnTp3Sr7/+qscff1xnzpxx1BUfH6+oqCjt3r1bR44ccbT/6KOP5Ofnp0cffVTDhg3TU089pfbt299WbdcKDQ3V8OHDderUKfXv398xQiqjx01y/vlN3Zd69erp/Pnz+uuvv5y2Z7fbnW5ieTPx8fEqUKDALdudP39ejz32mPLnz6+xY8c6LcuOz5kXX3xRu3bt0rPPPqvt27dr69at6tq1q+Li4tLtM3UfTp48meltAUBOQ0ABALhjBw8eVHBwsHx8fJzmlytXzrH8Wuk9QaNMmTI6f/68Tpw4kSU15c+fP937TKRerpDeEOrMOnXqlPr27avAwEDlz59fAQEBKlGihCQ5vvhfq3jx4k6vU79YpF5zf/DgQbm4uDj6SFWqVKk7qnP16tVq2rSpvLy85O/vr4CAAMe1+al1pp6j67dVsGDBNF/idu/erUWLFikgIMBpSr2W//jx45KuftEqU6aMWrZsqWLFiql79+6OEOZOpV6Hn/ozt3v3bm3bti1NTWXKlHGqqWPHjqpbt6569OihwMBAderUSd9++22GwgpXV1cVK1YszbFITExUkSJF0mz77Nmzju2mHt/rf/YDAgIy9CX5evXr11ejRo1ueC+KPXv2yBijYcOGpalr+PDhTsdEunqeP/zwQ23evFl+fn768MMPM13TjdSsWVOSnJ4uktHjJl29VOWhhx6Sn5+ffH19FRAQoCeffFJS2vfZfffdJ3d39wzXZm7xMLsrV66oU6dO2r59u7777jsFBwc7Lc+Oz5nnn39er7/+ur7++mtVqFBBkZGR2rt3r1599VVJaS+tSd2HjNybBwByOu5BAQDIk4oWLer4i+O1Uudd/0Xjdjz++OP6/fffNWjQIFWpUkXe3t5KSUlRixYt0v3Ce6NHVt7qS1J6bvRl5PoRKHv37lWTJk0UERGhd999VyEhIXJ3d9dPP/2k995777ZGEaSkpKhZs2aOL0zXSw0FihQpotjYWC1evFg///yzfv75Z02fPl1du3bVF198kentXmvr1q3Kly+fI8xJSUlRZGSk3n333XTbh4SESLr6hXHlypVatmyZfvzxRy1atEhz5sxR48aN9csvv9z0saJ2uz3NvQZSUlJUpEgRzZo1K911AgICbmf3MmT48OFq2LChPvnkE8fIkGvrkqSBAwcqKioq3fWvD6MWL14s6Wpg9vfff6fpMytl9LglJCSoQYMG8vX11ahRo1SyZEl5eHhow4YNeu2119L8/GYmEChUqFCaG3Jer2fPnvrhhx80a9Ysx2ica2XX58zo0aM1cOBAbdu2TX5+foqMjHSEiqnvr1Sp+3D9jT0BIDcioAAA3LHQ0FAtXbpUZ86ccRpFkTr8OjQ01Kn97t270/Sxa9cueXp6ZtkXuipVqmjVqlVKSUlx+lL5559/ytPTM81/8jPr9OnTio6O1siRI/Xmm2865qe3bxkVGhqqlJQU7d+/3+kv7Xv27EnTtkCBAkpISEgz//rRKt9//72Sk5O1cOFCpxEc1w6hT9126rauHcERHx+f5ktcyZIldfbs2TRPP0iPu7u72rZtq7Zt2yolJUUvvviiPvnkEw0bNuy2R4YcOnRIK1asUO3atR0/byVLltSmTZvUpEmTW/4l2cXFRU2aNFGTJk307rvv6j//+Y/eeOMNLVu2LEP7dK2SJUtq6dKlqlu37k2/HKce3927dys8PNwx/8SJE7f8knwjDRo0UMOGDTVu3Dinn0FJjm24ubllaJ8WLVqkadOm6dVXX9WsWbP09NNP688//5Sr6//7r2JW/oU+o8dt+fLlio+P1//+9z/Vr1/fMX///v13XENERIRmzZqlxMRE+fn5pVk+aNAgTZ8+Xe+//746d+6cbh/Z+TlToEABPfjgg47XS5cuVbFixRQREeHULvVYpI5YA4DcjEs8AAB3rFWrVrpy5Yo++ugjp/nvvfeebDabWrZs6TR/zZo1TvdoOHz4sBYsWKDmzZvf9C/YmfHoo4/q2LFj+t///ueYd/LkSc2dO1dt27ZN97rxzEit8/rRD6lPsLgdqX/pTn1yQqpJkyalaVuyZEklJiZq8+bNjnlxcXGaN2/eLetMTEzU9OnTndo1adJErq6uaR4/ev05la6OHFmzZo3jL+7XSkhI0OXLlyUpzeNWXVxcVKlSJUm67ce8njp1Sp07d9aVK1f0xhtvONV05MgRffbZZ2nW+ffff3Xu3DnH+terUqXKbdf0+OOP68qVK3rrrbfSLLt8+bIjRGratKnc3Nw0adIkp3NxJz8v0v+7F8Wnn37qNL9IkSKO0RXp/YX/2kupEhIS1KNHD9WqVUv/+c9/NG3aNG3YsEH/+c9/nNbx8vJK99Kl25HR45bez+/FixfTvEduR+3atWWMUUxMTJplEyZM0MSJE/X666/f9Ikz2f05k2rOnDlat26d+vXrl2YUT0xMjGw2m2rXrp0l2wIAKzGCAgBwx9q2batGjRrpjTfe0IEDB1S5cmX98ssvWrBggfr166eSJUs6ta9YsaKioqKcHjMqSSNHjrzltr7//ntt2rRJknTp0iVt3rxZb7/9tiSpXbt2ji/Ajz76qB544AE988wz2r59uwoXLqyPP/5YV65cydB2pKtf4lL7vlaJEiXUpUsX1a9fX+PHj9elS5d033336Zdffrmjv+xWr15djzzyiN5//33Fx8c7HjO6a9cuSc5/we7UqZNee+01PfTQQ3r55Zd1/vx5TZkyRWXKlHEKf5o3b+4YxdCrVy+dPXtWn332mYoUKeL0xTUwMFB9+/bVO++8o3bt2qlFixbatGmTfv75ZxUuXNhp24MGDdLChQvVpk0bdevWTdWrV9e5c+e0ZcsWfffddzpw4IAKFy6sHj166NSpU2rcuLGKFSumgwcPatKkSapSpUqG/tq7a9cuzZw5U8YYJSUladOmTZo7d67Onj2rd999Vy1atHC0feqpp/Ttt9/q+eef17Jly1S3bl1duXJFf/31l7799lstXrxYNWrU0KhRo7Ry5Uq1bt1aoaGhOn78uD7++GMVK1bM6a/VGdWgQQP16tVLY8aMUWxsrJo3by43Nzft3r1bc+fO1QcffKBHH31UAQEBGjhwoMaMGaM2bdqoVatW2rhxo+P43q4GDRqoQYMGWrFiRZplkydP1oMPPqjIyEj17NlT4eHhOnbsmNasWaO///7b8T7q27ev4uPjtXTpUuXLl08tWrRQjx499Pbbb6t9+/aqXLmypKs/n3PmzFH//v1Vs2ZNeXt7q23btrddd0aOW506dVSgQAE9/fTTevnll2Wz2fTVV1/d1mVR13vwwQdVqFAhLV261OnyjXnz5unVV19V6dKlVa5cOc2cOdNpvWbNmjkeX5qZz5mVK1c6biB74sQJnTt3zvH5Ur9+fccIkZUrV2rUqFFq3ry5ChUqpD/++EPTp09XixYt0g1LlixZorp166pQoUJ3fEwAwHLWPDwEAJCbXf+YUWOMOXPmjHnllVdMcHCwcXNzM6VLlzYTJkxweqSiMf/vUYkzZ840pUuXNna73VStWtUsW7YsQ9tOfdxjetO1j4U0xphTp06ZZ5991hQqVMh4enqaBg0aOD2G8WZSH1mY3tSkSRNjjDF///23eeihh4y/v7/x8/Mzjz32mOORf9c+EjT10Z/XP9oy9dGQ+/fvd8w7d+6c6d27tylYsKDx9vY2HTp0MDt37jSSzNixY53W/+WXX0zFihWNu7u7KVu2rJk5c2a6jxlduHChqVSpkvHw8DBhYWFm3Lhx5vPPP0+z7cuXL5thw4aZoKAgkz9/ftO4cWOzY8cOU6hQIfP888879XnmzBkzZMgQU6pUKePu7m4KFy5s6tSpYyZOnGguXrxojDHmu+++M82bNzdFihQx7u7upnjx4qZXr14mLi7ulsf/2uPt4uJi/P39TdWqVU3fvn3Ntm3b0l3n4sWLZty4caZChQrGbrebAgUKmOrVq5uRI0eaxMREY4wx0dHRpn379iY4ONi4u7ub4OBg07lzZ6dHpt7oMaNeXl43rPfTTz811atXN/nz5zc+Pj4mMjLSvPrqq+aff/5xtLly5YoZOXKkKVq0qMmfP79p2LCh2bp1qwkNDc30Y0avtWzZMsexuv7ne+/evaZr164mKCjIuLm5mfvuu8+0adPG8ajKBQsWGEnmnXfecVovKSnJhIaGmsqVKzvO59mzZ80TTzxh/P39jaQMP3I0tb65c+emWZaR47Z69WrzwAMPmPz585vg4GDz6quvmsWLFxtJTp8bGXk08PVefvllU6pUKad5qe+hG03Xf1Zl9HPmZv1e+3mxZ88e07x5c1O4cGFjt9tNRESEGTNmjElOTk7TZ0JCgnF3dzfTpk3L1H4DQE5lMyYLImgAADLIZrOpd+/e6V46gPTFxsaqatWqmjlzprp06XJXt52QkKACBQro7bffdrqkAsgL9u3bp4iICP38889q0qSJ1eVk2vvvv6/x48dr7969WfJkIgCwGvegAAAgB0nvkZHvv/++XFxcnG4SeDe3LUkNGzbM1m0DVggPD9ezzz6rsWPHWl1Kpl26dEnvvvuuhg4dSjgBIM/gHhQAAOQg48ePV0xMjBo1aiRXV1fH4zmfe+45x6Mys8ucOXM0Y8YMtWrVSt7e3vrtt9/0zTffqHnz5qpbt262bhuwyvU3hs0t3NzcdOjQIavLAIAsRUABAEAOUqdOHS1ZskRvvfWWzp49q+LFi2vEiBF35fKKSpUqydXVVePHj1dSUpLjxpnp3SgUAAAgq3EPCgAAAAAAYDnuQQEAAAAAACxHQAEAAAAAACzHPShysZSUFP3zzz/y8fGRzWazuhwAAAAAQB5njNGZM2cUHBwsF5esHfNAQJGL/fPPP9l+R3cAAAAAAK53+PBhFStWLEv7JKDIxXx8fCRd/cHw9fW1uBoAAAAAQF6XlJSkkJAQx/fRrERAkYulXtbh6+tLQAEAAAAAuGuy4zYD3CQTAAAAAABYjhEUeUD9od8onz2/1WUAAAAAADIpZkJXq0vIMRhBAQAAAAAALEdAAQAAAAAALEdAAQAAAAAALEdAAQAAAAAALEdAAQAAAAAALEdAAQAAAAAALEdAAQAAAAAALEdAAQAAAAAALEdAAQAAAAAALEdAAQAAAAAALEdAAQAAAAAALEdAAQAAAAAALEdAAQAAAAAALEdAkYUOHDggm82m2NhYq0sBAAAAACBXyREBRbdu3dShQ4e7us158+bpgQcekJ+fn3x8fFShQgX169fvjvoMCQlRXFycKlasmOF1ZsyYIX9//zvaLgAAAAAAuZ2r1QVYITo6Wh07dtTo0aPVrl072Ww2bd++XUuWLLntPi9evCh3d3cFBQVlYaUAAAAAANwbcsQIimstWrRIDz74oPz9/VWoUCG1adNGe/fudSyvU6eOXnvtNad1Tpw4ITc3N61cuVKS9NVXX6lGjRry8fFRUFCQnnjiCR0/ftzR/vvvv1fdunU1aNAglS1bVmXKlFGHDh00efJkp36///571axZUx4eHipcuLAeeughx7KwsDC99dZb6tq1q3x9ffXcc8+lucRj+fLlstls+vHHH1WpUiV5eHjogQce0NatWx3Ln3nmGSUmJspms8lms2nEiBFZeTgBAAAAAMgVclxAce7cOfXv31/r169XdHS0XFxc9NBDDyklJUWS1KVLF82ePVvGGMc6c+bMUXBwsOrVqydJunTpkt566y1t2rRJ8+fP14EDB9StWzdH+6CgIG3bts0RFKTnxx9/1EMPPaRWrVpp48aNio6OVq1atZzaTJw4UZUrV9bGjRs1bNiwG/Y1aNAgvfPOO1q3bp0CAgLUtm1bXbp0SXXq1NH7778vX19fxcXFKS4uTgMHDrxhP8nJyUpKSnKaAAAAAADIC3LcJR6PPPKI0+vPP/9cAQEB2r59uypWrKjHH39c/fr102+//eYIJL7++mt17txZNptNktS9e3fH+uHh4frwww9Vs2ZNnT17Vt7e3urTp49WrVqlyMhIhYaG6oEHHlDz5s3VpUsX2e12SdLo0aPVqVMnjRw50tFX5cqVnWpr3LixBgwY4Hh94MCBdPdp+PDhatasmSTpiy++ULFixTRv3jw9/vjj8vPzk81my9ClIWPGjHGqBwAAAACAvCLHjaDYvXu3OnfurPDwcPn6+iosLEySdOjQIUlSQECAmjdvrlmzZkmS9u/frzVr1qhLly6OPmJiYtS2bVsVL15cPj4+atCggVMfXl5e+vHHH7Vnzx4NHTpU3t7eGjBggGrVqqXz589LkmJjY9WkSZOb1lqjRo0M7VPt2rUd/y5YsKDKli2rHTt2ZGjdaw0ZMkSJiYmO6fDhw5nuAwAAAACAnCjHBRRt27bVqVOn9Nlnn+nPP//Un3/+KenqTShTdenSRd99950uXbqkr7/+WpGRkYqMjJR09RKRqKgo+fr6atasWVq3bp3mzZuXpg9JKlmypHr06KFp06Zpw4YN2r59u+bMmSNJyp8//y1r9fLyypJ9zii73S5fX1+nCQAAAACAvCBHBRTx8fHauXOnhg4dqiZNmqhcuXI6ffp0mnbt27fXhQsXtGjRIn399ddOoyf++usvxcfHa+zYsapXr54iIiKcbpB5I2FhYfL09NS5c+ckSZUqVVJ0dHSW7Ncff/zh+Pfp06e1a9culStXTpLk7u6uK1euZMl2AAAAAADIrXLUPSgKFCigQoUK6dNPP1XRokV16NAhDR48OE07Ly8vdejQQcOGDdOOHTvUuXNnx7LixYvL3d1dkyZN0vPPP6+tW7fqrbfeclp/xIgROn/+vFq1aqXQ0FAlJCToww8/1KVLlxz3ihg+fLiaNGmikiVLqlOnTrp8+bJ++umnNE8QyYhRo0apUKFCCgwM1BtvvKHChQurQ4cOkq4GI2fPnlV0dLQqV64sT09PeXp6ZnobAAAAAADkZjliBEVKSopcXV3l4uKi2bNnKyYmRhUrVtQrr7yiCRMmpLtOly5dtGnTJtWrV0/Fixd3zA8ICNCMGTM0d+5clS9fXmPHjtXEiROd1m3QoIH27dunrl27KiIiQi1bttTRo0f1yy+/qGzZspKkhg0bau7cuVq4cKGqVKmixo0ba+3atbe1f2PHjlXfvn1VvXp1HT16VN9//73c3d0lXX1s6vPPP6+OHTsqICBA48ePv61tAAAAAACQm9nMtc/rtEiLFi1UqlQpffTRR1aXkqWWL1+uRo0a6fTp0/L398/y/pOSkuTn56fKfaYqn/3W98wAAAAAAOQsMRO6Wl1CpqR+D01MTMzy+yJaOoLi9OnT+uGHH7R8+XI1bdrUylIAAAAAAICFLL0HRffu3bVu3ToNGDBA7du3t7IUAAAAAABgIUsDitTHf+ZVDRs2VA64ggYAAAAAgBwvR9wkEwAAAAAA3NsIKAAAAAAAgOUIKAAAAAAAgOUIKAAAAAAAgOUIKAAAAAAAgOUIKAAAAAAAgOUIKAAAAAAAgOUIKAAAAAAAgOVcrS4Ad27l253l6+trdRkAAAAAANw2RlAAAAAAAADLEVAAAAAAAADLEVAAAAAAAADLEVAAAAAAAADLEVAAAAAAAADLEVAAAAAAAADLEVAAAAAAAADLEVAAAAAAAADLEVAAAAAAAADLuVpdAO5c/aHfKJ89v9VlAAAAAMiEmAldrS4ByFEYQQEAAAAAACxHQAEAAAAAACxHQAEAAAAAACxHQAEAAAAAACxHQAEAAAAAACxHQAEAAAAAACxHQAEAAAAAACxHQAEAAAAAACxHQAEAAAAAACxHQAEAAAAAACxHQAEAAAAAACxHQAEAAAAAACxHQJFJ3bp1U4cOHawuAwAAAACAPCVPBxTdunWTzWaTzWaTu7u7SpUqpVGjRuny5cu3XPfAgQOy2WyKjY3N/kIBAAAAALjHuVpdQHZr0aKFpk+fruTkZP3000/q3bu33NzcNGTIEKtLAwAAAAAA/788PYJCkux2u4KCghQaGqoXXnhBTZs21bfffitfX1999913Tm3nz58vLy8vnTlzRiVKlJAkVa1aVTabTQ0bNnRqO3HiRBUtWlSFChVS7969denSJcey06dPq2vXripQoIA8PT3VsmVL7d6927F8xowZ8vf31+LFi1WuXDl5e3urRYsWiouLy74DAQAAAABADpbnA4rr5c+fXy4uLurUqZOmT5/utGz69Ol69NFH5ePjo7Vr10qSli5dqri4OP3vf/9ztFu2bJn27t2rZcuW6YsvvtCMGTM0Y8YMx/Ju3bpp/fr1WrhwodasWSNjjFq1auUUYpw/f14TJ07UV199pZUrV+rQoUMaOHDgTWtPTk5WUlKS0wQAAAAAQF5wzwQUxhgtXbpUixcvVuPGjdWjRw8tXrzYMWrh+PHj+umnn9S9e3dJUkBAgCSpUKFCCgoKUsGCBR19FShQQB999JEiIiLUpk0btW7dWtHR0ZKk3bt3a+HChZo2bZrq1aunypUra9asWTpy5Ijmz5/v6OPSpUuaOnWqatSooWrVqumll15y9HEjY8aMkZ+fn2MKCQnJykMEAAAAAIBl8nxA8cMPP8jb21seHh5q2bKlOnbsqBEjRqhWrVqqUKGCvvjiC0nSzJkzFRoaqvr169+yzwoVKihfvnyO10WLFtXx48clSTt27JCrq6vuv/9+x/JChQqpbNmy2rFjh2Oep6enSpYsmW4fNzJkyBAlJiY6psOHD2fsIAAAAAAAkMPl+YCiUaNGio2N1e7du/Xvv//qiy++kJeXlySpR48ejkszpk+frmeeeUY2m+2Wfbq5uTm9ttlsSklJyVRd6fVhjLnpOna7Xb6+vk4TAAAAAAB5QZ4PKLy8vFSqVCkVL15crq7ODy158skndfDgQX344Yfavn27nn76accyd3d3SdKVK1cytb1y5crp8uXL+vPPPx3z4uPjtXPnTpUvX/4O9gQAAAAAgLwrzwcUN1OgQAE9/PDDGjRokJo3b65ixYo5lhUpUkT58+fXokWLdOzYMSUmJmaoz9KlS6t9+/bq2bOnfvvtN23atElPPvmk7rvvPrVv3z67dgUAAAAAgFztng4oJOnZZ5/VxYsXHTfHTOXq6qoPP/xQn3zyiYKDgzMVLkyfPl3Vq1dXmzZtVLt2bRlj9NNPP6W5rAMAAAAAAFxlM7e68UEe99VXX+mVV17RP//847isI7dISkqSn5+fKveZqnz2/FaXAwAAACATYiZ0tboEINNSv4cmJiZm+X0RXW/dJG86f/684uLiNHbsWPXq1SvXhRMAAAAAAOQl9+wlHuPHj1dERISCgoI0ZMgQq8sBAAAAAOCeds8GFCNGjNClS5cUHR0tb29vq8sBAAAAAOCeds8GFAAAAAAAIOcgoAAAAAAAAJYjoAAAAAAAAJYjoAAAAAAAAJYjoAAAAAAAAJYjoAAAAAAAAJYjoAAAAAAAAJYjoAAAAAAAAJYjoAAAAAAAAJZztboA3LmVb3eWr6+v1WUAAAAAAHDbGEEBAAAAAAAsR0ABAAAAAAAsR0ABAAAAAAAsR0ABAAAAAAAsR0ABAAAAAAAsR0ABAAAAAAAsR0ABAAAAAAAsR0ABAAAAAAAs52p1Abhz9Yd+o3z2/FaXAQAAAOQ5MRO6Wl0CcM9gBAUAAAAAALAcAQUAAAAAALAcAQUAAAAAALAcAQUAAAAAALAcAQUAAAAAALAcAQUAAAAAALAcAQUAAAAAALAcAQUAAAAAALAcAQUAAAAAALAcAQUAAAAAALAcAQUAAAAAALAcAQUAAAAAALAcAQUAAAAAALAcAYWkbt26qUOHDmnmL1++XDabTR06dJDNZrvhFBYWJklq2LChbDabxo4dm6av1q1by2azacSIEY55DRs2VL9+/bJnpwAAAAAAyEUIKDLggw8+UFxcnGOSpOnTpzter1u3ztE2JCREM2bMcFr/yJEjio6OVtGiRe9m2QAAAAAA5BoEFBng5+enoKAgxyRJ/v7+jtcBAQGOtm3atNHJkye1evVqx7wvvvhCzZs3V5EiRe567QAAAAAA5AYEFFnM3d1dXbp00fTp0x3zZsyYoe7du99x38nJyUpKSnKaAAAAAADICwgo/n8//PCDvL29naaWLVveVl/du3fXt99+q3PnzmnlypVKTExUmzZt7rjGMWPGyM/PzzGFhITccZ8AAAAAAOQEBBT/v0aNGik2NtZpmjZt2m31VblyZZUuXVrfffedPv/8cz311FNydXW94xqHDBmixMREx3T48OE77hMAAAAAgJzgzr815xFeXl4qVaqU07y///77tvvr3r27Jk+erO3bt2vt2rV3Wp4kyW63y263Z0lfAAAAAADkJIygyCZPPPGEtmzZoooVK6p8+fJWlwMAAAAAQI7GCIpsUqBAAcXFxcnNze2m7U6cOKHY2FineUWLFlVgYGA2VgcAAAAAQM7CCIps5O/vLy8vr5u2+frrr1W1alWn6bPPPrtLFQIAAAAAkDPYjDHG6iJwe5KSkuTn56fKfaYqnz2/1eUAAAAAeU7MhK5WlwDkKKnfQxMTE+Xr65ulfTOCAgAAAAAAWI6AAgAAAAAAWI6AAgAAAAAAWI6AAgAAAAAAWI6AAgAAAAAAWI6AAgAAAAAAWI6AAgAAAAAAWI6AAgAAAAAAWI6AAgAAAAAAWI6AAgAAAAAAWI6AAgAAAAAAWI6AAgAAAAAAWM7V6gJw51a+3Vm+vr5WlwEAAAAAwG1jBAUAAAAAALAcAQUAAAAAALAcAQUAAAAAALAcAQUAAAAAALAcAQUAAAAAALAcAQUAAAAAALAcAQUAAAAAALAcAQUAAAAAALCcq9UF4M7VH/qN8tnzW10GAAAAcEdiJnS1ugQAFmIEBQAAAAAAsBwBBQAAAAAAsBwBBQAAAAAAsBwBBQAAAAAAsBwBBQAAAAAAsBwBBQAAAAAAsBwBBQAAAAAAsBwBBQAAAAAAsBwBBQAAAAAAsBwBBQAAAAAAsBwBBQAAAAAAsBwBBQAAAAAAsBwBBQAAAAAAsBwBBQAAAAAAsBwBxW06evSo+vTpo/DwcNntdoWEhKht27aKjo6WJG3atEnt2rVTkSJF5OHhobCwMHXs2FHHjx939DFv3jw98MAD8vPzk4+PjypUqKB+/fpZtEcAAAAAAFjH1eoCcqMDBw6obt268vf314QJExQZGalLly5p8eLF6t27t1atWqUmTZqoTZs2Wrx4sfz9/XXgwAEtXLhQ586dkyRFR0erY8eOGj16tNq1ayebzabt27dryZIlFu8dAAAAAAB3n80YY6wuIrdp1aqVNm/erJ07d8rLy8tpWUJCgpYvX67HHntM//77r1xd08+A+vXrp02bNmnZsmUZ3m5ycrKSk5Mdr5OSkhQSEqLKfaYqnz3/7e0MAAAAkEPETOhqdQkAbiEpKUl+fn5KTEyUr69vlvbNJR6ZdOrUKS1atEi9e/dOE05Ikr+/v4KCgnT58mXNmzdPN8p/goKCtG3bNm3dujXD2x4zZoz8/PwcU0hIyG3vBwAAAAAAOQkBRSbt2bNHxhhFRETcsM0DDzyg119/XU888YQKFy6sli1basKECTp27JijTZ8+fVSzZk1FRkYqLCxMnTp10ueff+40QuJ6Q4YMUWJiomM6fPhwlu4bAAAAAABWIaDIpIxeETN69GgdPXpUU6dOVYUKFTR16lRFRERoy5YtkiQvLy/9+OOP2rNnj4YOHSpvb28NGDBAtWrV0vnz59Pt0263y9fX12kCAAAAACAvIKDIpNKlS8tms+mvv/66ZdtChQrpscce08SJE7Vjxw4FBwdr4sSJTm1KliypHj16aNq0adqwYYO2b9+uOXPmZFf5AAAAAADkSAQUmVSwYEFFRUVp8uTJjidyXCshISHd9dzd3VWyZMl010kVFhYmT0/Pm7YBAAAAACAv4jGjt2Hy5MmqW7euatWqpVGjRqlSpUq6fPmylixZoilTpmjChAmaPXu2OnXqpDJlysgYo++//14//fSTpk+fLkkaMWKEzp8/r1atWik0NFQJCQn68MMPdenSJTVr1sziPQQAAAAA4O4ioLgN4eHh2rBhg0aPHq0BAwYoLi5OAQEBql69uqZMmaLixYvL09NTAwYM0OHDh2W321W6dGlNmzZNTz31lCSpQYMGmjx5srp27apjx46pQIECqlq1qn755ReVLVvW4j0EAAAAAODuspmM3vUROU7q82cr95mqfPb8VpcDAAAA3JGYCV2tLgHALaR+D01MTMzyBzdwDwoAAAAAAGA5AgoAAAAAAGA5AgoAAAAAAGA5AgoAAAAAAGA5AgoAAAAAAGA5AgoAAAAAAGA5AgoAAAAAAGA5AgoAAAAAAGA5AgoAAAAAAGA5AgoAAAAAAGA5AgoAAAAAAGA5V6sLwJ1b+XZn+fr6Wl0GAAAAAAC3jREUAAAAAADAcgQUAAAAAADAcgQUAAAAAADAcgQUAAAAAADAcgQUAAAAAADAcgQUAAAAAADAcgQUAAAAAADAcgQUAAAAAADAcq5WF4A7V3/oN8pnz291GQAAALBIzISuVpcAAHeMERQAAAAAAMByBBQAAAAAAMByBBQAAAAAAMBymQ4o9u3blx11AAAAAACAe1imA4pSpUqpUaNGmjlzpi5cuJAdNQEAAAAAgHtMpgOKDRs2qFKlSurfv7+CgoLUq1cvrV27NjtqAwAAAAAA94hMBxRVqlTRBx98oH/++Ueff/654uLi9OCDD6pixYp69913deLEieyoEwAAAAAA5GG3fZNMV1dXPfzww5o7d67GjRunPXv2aODAgQoJCVHXrl0VFxeXlXUCAAAAAIA87LYDivXr1+vFF19U0aJF9e6772rgwIHau3evlixZon/++Uft27fPyjoBAAAAAEAe5prZFd59911Nnz5dO3fuVKtWrfTll1+qVatWcnG5mnWUKFFCM2bMUFhYWFbXCgAAAAAA8qhMBxRTpkxR9+7d1a1bNxUtWjTdNkWKFNF///vfOy4OAAAAAADcGzIdUOzevfuWbdzd3fX000/fVkEAAAAAAODek+mAYvPmzenOt9ls8vDwUPHixWW32++4MAAAAAAAcO/IdEBRpUoV2Wy2Gy53c3NTx44d9cknn8jDw+OOigMAAAAAAPeGTD/FY968eSpdurQ+/fRTxcbGKjY2Vp9++qnKli2rr7/+Wv/973/166+/aujQodlRb45w4sQJvfDCC47RIkFBQYqKitLq1asdbX7//Xe1atVKBQoUkIeHhyIjI/Xuu+/qypUrTn3ZbDbNnz//Lu8BAAAAAAA5S6ZHUIwePVoffPCBoqKiHPMiIyNVrFgxDRs2TGvXrpWXl5cGDBigiRMnZmmxOcUjjzyiixcv6osvvlB4eLiOHTum6OhoxcfHS7oa4jz++ON65plntGzZMvn7+2vp0qV69dVXtWbNGn377bc3HYUCAAAAAMC9JtMBxZYtWxQaGppmfmhoqLZs2SLp6mUgcXFxd15dDpSQkKBVq1Zp+fLlatCggaSr+16rVi1J0rlz59SzZ0+1a9dOn376qWO9Hj16KDAwUO3atdO3336rjh07WlI/AAAAAAA5UaYv8YiIiNDYsWN18eJFx7xLly5p7NixioiIkCQdOXJEgYGBWVdlDuLt7S1vb2/Nnz9fycnJaZb/8ssvio+P18CBA9Msa9u2rcqUKaNvvvnmtradnJyspKQkpwkAAAAAgLwg0yMoJk+erHbt2qlYsWKqVKmSpKujKq5cuaIffvhBkrRv3z69+OKLWVtpDuHq6qoZM2aoZ8+emjp1qqpVq6YGDRqoU6dOqlSpknbt2iVJKleuXLrrR0REONpk1pgxYzRy5Mjbrh0AAAAAgJwq0wFFnTp1tH//fs2aNcvxRfuxxx7TE088IR8fH0nSU089lbVV5jCPPPKIWrdurVWrVumPP/7Qzz//rPHjx2vatGmONsaYG67v7u5+W9sdMmSI+vfv73idlJSkkJCQ2+oLAAAAAICcJNMBhST5+Pjo+eefz+pachUPDw81a9ZMzZo107Bhw9SjRw8NHz5c7733niRpx44dqlOnTpr1duzYoSpVqtzWNu12u+x2+52UDQAAAABAjpTpe1BI0t69e9WnTx81bdpUTZs2Vd++fbV3796sri1XKV++vM6dO6eoqCgVLFhQ77zzTpo2Cxcu1O7du9WtW7e7XyAAAAAAADlYpgOKxYsXq3z58lq7dq0qVaqkSpUq6Y8//lCFChW0ZMmS7KgxR4mPj1fjxo01c+ZMbd68Wfv379fcuXM1fvx4tW/fXl5eXvrkk0+0YMECPffcc9q8ebMOHDig//73v+rWrZt69uypVq1aOfW5f/9+xcbGOk3nzp2zaA8BAAAAALj7bOZmN0tIR9WqVRUVFaWxY8c6zR88eLB++eUXbdiwIUsLzGmSk5M1YsQI/fLLL9q7d68uXbqkkJAQPfbYY3r99deVP39+SdKqVas0evRorVmzxvG0jXHjxunVV1916s9ms6W7nVWrVunBBx+8aS1JSUny8/NT5T5Tlc+ePwv2DgAAALlRzISuVpcA4B6R+j00MTFRvr6+Wdp3pgMKDw8PbdmyRaVLl3aav2vXLlWqVEkXLlzI0gLzggsXLqh9+/Y6fPiwVqxYoYCAgCzpl4ACAAAAEgEFgLsnOwOKTF/iERAQoNjY2DTzY2NjVaRIkayoKc/x8PDQggUL1LVrV61cudLqcgAAAAAAyHEy/RSPnj176rnnntO+ffscT6lYvXq1xo0b5/QITDjz8PDQ4MGDrS4DAAAAAIAcKdMBxbBhw+Tj46N33nlHQ4YMkSQFBwdrxIgRevnll7O8QAAAAAAAkPdlOqCw2Wx65ZVX9Morr+jMmTOSJB8fnywvDAAAAAAA3DsyHVBci2ACAAAAAABkhQwFFFWrVr3h4zCvl9cfMwoAAAAAALJehgKKDh06ZHMZAAAAAADgXpahgGL48OHZXQcAAAAAALiH3fY9KGJiYrRjxw5JUoUKFVS1atUsKwoAAAAAANxbMh1QHD9+XJ06ddLy5cvl7+8vSUpISFCjRo00e/ZsBQQEZHWNAAAAAAAgj3PJ7Ap9+vTRmTNntG3bNp06dUqnTp3S1q1blZSUpJdffjk7agQAAAAAAHmczRhjMrOCn5+fli5dqpo1azrNX7t2rZo3b66EhISsrA83kZSUJD8/PyUmJsrX19fqcgAAAAAAeVx2fg/N9AiKlJQUubm5pZnv5uamlJSULCkKAAAAAADcWzIdUDRu3Fh9+/bVP//845h35MgRvfLKK2rSpEmWFgcAAAAAAO4NmQ4oPvroIyUlJSksLEwlS5ZUyZIlVaJECSUlJWnSpEnZUSMAAAAAAMjjMv0Uj5CQEG3YsEFLly7VX3/9JUkqV66cmjZtmuXFAQAAAACAe0Omb5KJnIObZAIAAAAA7qbs/B6a6REUkhQdHa3o6GgdP348zY0xP//88ywpDAAAAAAA3DsyHVCMHDlSo0aNUo0aNVS0aFHZbLbsqAsAAAAAANxDMh1QTJ06VTNmzNBTTz2VHfUAAAAAAIB7UKYDiosXL6pOnTrZUQtuU/2h3yifPb/VZQAAgBwgZkJXq0sAAOC2ZPoxoz169NDXX3+dHbUAAAAAAIB7VKZHUFy4cEGffvqpli5dqkqVKsnNzc1p+bvvvptlxQEAAAAAgHtDpgOKzZs3q0qVKpKkrVu3Oi3jhpkAAAAAAOB2ZDqgWLZsWXbUAQAAAAAA7mGZvgcFAAAAAABAVsv0CIpz585p7Nixio6O1vHjx5WSkuK0fN++fVlWHAAAAAAAuDdkOqDo0aOHVqxYoaeeekpFixblvhMAAAAAAOCOZTqg+Pnnn/Xjjz+qbt262VEPAAAAAAC4B2X6HhQFChRQwYIFs6MWAAAAAABwj8p0QPHWW2/pzTff1Pnz57OjHgAAAAAAcA/K0CUeVatWdbrXxJ49exQYGKiwsDC5ubk5td2wYUPWVggAAAAAAPK8DAUUHTp0yOYyAAAAAADAvSxDAcXw4cOzuw4AAAAAAHAPy/Q9KNatW6c///wzzfw///xT69evz5KiAAAAAADAvSXTAUXv3r11+PDhNPOPHDmi3r17Z0lROVG3bt241AUAAAAAgGyS6YBi+/btqlatWpr5VatW1fbt27OkKAAAAAAAcG/JdEBht9t17NixNPPj4uLk6pqhW1rkeosWLdKDDz4of39/FSpUSG3atNHevXsdy+vUqaPXXnvNaZ0TJ07Izc1NK1eulCR99dVXqlGjhnx8fBQUFKQnnnhCx48fv6v7AQAAAABATpHpgKJ58+YaMmSIEhMTHfMSEhL0+uuvq1mzZllaXE517tw59e/fX+vXr1d0dLRcXFz00EMPKSUlRZLUpUsXzZ49W8YYxzpz5sxRcHCw6tWrJ0m6dOmS3nrrLW3atEnz58/XgQMH1K1bt5tuNzk5WUlJSU4TAAAAAAB5gc1c+y06A44cOaL69esrPj5eVatWlSTFxsYqMDBQS5YsUUhISLYUarVu3bopISFB8+fPT7Ps5MmTCggI0JYtW1SxYkWdOHFCwcHB+vXXXx2BRJ06dVS/fn2NHTs23f7Xr1+vmjVr6syZM/L29k63zYgRIzRy5Mg08yv3map89vy3v3MAACDPiJnQ1eoSAAB5WFJSkvz8/JSYmChfX98s7TvTIyjuu+8+bd68WePHj1f58uVVvXp1ffDBB9qyZUueDSeut3v3bnXu3Fnh4eHy9fVVWFiYJOnQoUOSpICAADVv3lyzZs2SJO3fv19r1qxRly5dHH3ExMSobdu2Kl68uHx8fNSgQQOnPtKTOnIldUrvZqUAAAAAAORGt3XTCC8vLz333HNZXUuu0bZtW4WGhuqzzz5TcHCwUlJSVLFiRV28eNHRpkuXLnr55Zc1adIkff3114qMjFRkZKSkq5eIREVFKSoqSrNmzVJAQIAOHTqkqKgopz6uZ7fbZbfbs33/AAAAAAC42zI9gkK6eoPHBx98UMHBwTp48KAk6b333tOCBQuytLicKD4+Xjt37tTQoUPVpEkTlStXTqdPn07Trn379rpw4YIWLVqkr7/+2mn0xF9//aX4+HiNHTtW9erVU0REBDfIBAAAAADc0zIdUEyZMkX9+/dXy5Ytdfr0aV25ckWSVKBAAb3//vtZXV+OU6BAARUqVEiffvqp9uzZo19//VX9+/dP087Ly0sdOnTQsGHDtGPHDnXu3NmxrHjx4nJ3d9ekSZO0b98+LVy4UG+99dbd3A0AAAAAAHKUTAcUkyZN0meffaY33njD6bGiNWrU0JYtW7K0uJwkJSVFrq6ucnFx0ezZsxUTE6OKFSvqlVde0YQJE9Jdp0uXLtq0aZPq1aun4sWLO+YHBARoxowZmjt3rsqXL6+xY8dq4sSJd2tXAAAAAADIcTJ9D4r9+/c7nt5xLbvdrnPnzmVJUTnR8ePHVapUKUlS06ZNtX37dqfl6T0MpWXLlunOl6TOnTs7jaq4UR8AAAAAANwLMj2CokSJEoqNjU0zf9GiRSpXrlxW1JSjnD59Wj/88IOWL1+upk2bWl0OAAAAAAB5UoZHUIwaNUoDBw5U//791bt3b124cEHGGK1du1bffPONxowZo2nTpmVnrZbo3r271q1bpwEDBqh9+/ZWlwMAAAAAQJ5kMxm8riBfvnyKi4tTkSJFNGvWLI0YMUJ79+6VJAUHB2vkyJF69tlns7VYOEtKSpKfn58q95mqfPb8VpcDAABygJgJXa0uAQCQh6V+D01MTJSvr2+W9p3hERTX5hhdunRRly5ddP78eZ09e1ZFihTJ0qIAAAAAAMC9JVM3ybTZbE6vPT095enpmaUFAQAAAACAe0+mAooyZcqkCSmud+rUqTsqCAAAAAAA3HsyFVCMHDlSfn5+2VULAAAAAAC4R2UqoOjUqRP3mwAAAAAAAFnOJaMNb3VpBwAAAAAAwO3KcECRwaeRAgAAAAAAZFqGL/FISUnJzjoAAAAAAMA9LFP3oEDOtPLtzvL19bW6DAAAAAAAbluGL/EAAAAAAADILgQUAAAAAADAcgQUAAAAAADAcgQUAAAAAADAcgQUAAAAAADAcgQUAAAAAADAcgQUAAAAAADAcgQUAAAAAADAcgQUAAAAAADAcq5WF4A7V3/oN8pnz291GQAA5HkxE7paXQIAAHkWIygAAAAAAIDlCCgAAAAAAIDlCCgAAAAAAIDlCCgAAAAAAIDlCCgAAAAAAIDlCCgAAAAAAIDlCCgAAAAAAIDlCCgAAAAAAIDlCCgAAAAAAIDlCCgAAAAAAIDlCCgAAAAAAIDlCCgAAAAAAIDlCCgAAAAAAIDl8nRAMWPGDPn7+2d5v8uXL5fNZlNCQsId9WOz2TR//nxJ0oEDB2Sz2RQbG3vH9QEAAAAAkNtYGlB069ZNNpvNMRUqVEgtWrTQ5s2b73otI0eO1JNPPilJ2rRpk9q1a6ciRYrIw8NDYWFh6tixo44fP37X6wIAAAAA4F5g+QiKFi1aKC4uTnFxcYqOjparq6vatGlz1+tYsGCB2rVrpxMnTqhJkyYqWLCgFi9erB07dmj69OkKDg7WuXPn7npdAAAAAADcCywPKOx2u4KCghQUFKQqVapo8ODBOnz4sE6cOCFJeu2111SmTBl5enoqPDxcw4YN06VLlxzrb9q0SY0aNZKPj498fX1VvXp1rV+/3mkbixcvVrly5eTt7e0IRK51+PBhbdu2TS1atNDq1auVmJioadOmqWrVqipRooQaNWqk9957TyVKlHBaLyYmRjVq1JCnp6fq1KmjnTt3Oi1fsGCBqlWrJg8PD4WHh2vkyJG6fPnybR+r5ORkJSUlOU0AAAAAAOQFlgcU1zp79qxmzpypUqVKqVChQpIkHx8fzZgxQ9u3b9cHH3ygzz77TO+9955jnS5duqhYsWJat26dYmJiNHjwYLm5uTmWnz9/XhMnTtRXX32llStX6tChQxo4cKDTdhcuXKiGDRvK19dXQUFBunz5subNmydjzE3rfeONN/TOO+9o/fr1cnV1Vffu3R3LVq1apa5du6pv377avn27PvnkE82YMUOjR4++7eMzZswY+fn5OaaQkJDb7gsAAAAAgJzE8oDihx9+kLe3t7y9veXj46OFCxdqzpw5cnG5WtrQoUNVp04dhYWFqW3btho4cKC+/fZbx/qHDh1S06ZNFRERodKlS+uxxx5T5cqVHcsvXbqkqVOnqkaNGqpWrZpeeuklRUdHO9WQenmHJD3wwAN6/fXX9cQTT6hw4cJq2bKlJkyYoGPHjqWpffTo0WrQoIHKly+vwYMH6/fff9eFCxckXb2nxeDBg/X0008rPDxczZo101tvvaVPPvnkto/VkCFDlJiY6JgOHz58230BAAAAAJCTWB5QNGrUSLGxsYqNjdXatWsVFRWlli1b6uDBg5KkOXPmqG7dugoKCpK3t7eGDh2qQ4cOOdbv37+/evTooaZNm2rs2LHau3evU/+enp4qWbKk43XRokWdbnaZlJSkFStWOAIK6WrwcPToUU2dOlUVKlTQ1KlTFRERoS1btjj1XalSJad+JTn63rRpk0aNGuUIX7y9vdWzZ0/FxcXp/Pnzt3Ws7Ha7fH19nSYAAAAAAPICywMKLy8vlSpVSqVKlVLNmjU1bdo0nTt3Tp999pnWrFmjLl26qFWrVvrhhx+0ceNGvfHGG7p48aJj/REjRmjbtm1q3bq1fv31V5UvX17z5s1zLL/2cg/p6qM9r7104+eff1b58uXTXC5RqFAhPfbYY5o4caJ27Nih4OBgTZw40anNtX3bbDZJUkpKiqSrl6uMHDnSEb7ExsZqy5Yt2r17tzw8PO7wqAEAAAAAkLe4Wl3A9Ww2m1xcXPTvv//q999/V2hoqN544w3H8tSRFdcqU6aMypQpo1deeUWdO3fW9OnT9dBDD2VoewsWLFD79u1v2sbd3V0lS5bM1FM8qlWrpp07d6pUqVIZXgcAAAAAgHuV5QFFcnKyjh49Kkk6ffq0PvroI509e1Zt27ZVUlKSDh06pNmzZ6tmzZr68ccfnUZH/Pvvvxo0aJAeffRRlShRQn///bfWrVunRx55JEPbvnz5sn7++Wenm2b+8MMPmj17tjp16qQyZcrIGKPvv/9eP/30k6ZPn57h/XrzzTfVpk0bFS9eXI8++qhcXFy0adMmbd26VW+//XaG+wEAAAAA4F5geUCxaNEix/0bfHx8FBERoblz56phw4aSpFdeeUUvvfSSkpOT1bp1aw0bNkwjRoyQJOXLl0/x8fHq2rWrjh07psKFC+vhhx/WyJEjM7TtFStWyNvbW9WqVXPMK1++vDw9PTVgwAAdPnxYdrtdpUuX1rRp0/TUU09leL+ioqL0ww8/aNSoURo3bpzc3NwUERGhHj16ZLgPAAAAAADuFTZzq2dp5mEvv/yyLl++rI8//tjqUm5LUlKS/Pz8VLnPVOWz57e6HAAA8ryYCV2tLgEAAEulfg9NTEzM8gc3WD6CwkoVK1ZU7dq1rS4DAAAAAIB73j0dUDz33HNWlwAAAAAAAJQDHjMKAAAAAABAQAEAAAAAACxHQAEAAAAAACxHQAEAAAAAACxHQAEAAAAAACxHQAEAAAAAACxHQAEAAAAAACxHQAEAAAAAACxHQAEAAAAAACznanUBuHMr3+4sX19fq8sAAAAAAOC2MYICAAAAAABYjoACAAAAAABYjoACAAAAAABYjoACAAAAAABYjoACAAAAAABYjoACAAAAAABYjoACAAAAAABYjoACAAAAAABYztXqAnDn6g/9Rvns+a0uAwCAXC9mQlerSwAA4J7FCAoAAAAAAGA5AgoAAAAAAGA5AgoAAAAAAGA5AgoAAAAAAGA5AgoAAAAAAGA5AgoAAAAAAGA5AgoAAAAAAGA5AgoAAAAAAGA5AgoAAAAAAGA5AgoAAAAAAGA5AgoAAAAAAGA5AgoAAAAAAGA5AgoAAAAAAGA5AoosdPToUfXp00fh4eGy2+0KCQlR27ZtFR0dnabt3LlzVadOHUnS77//rvDw8LtdLgAAAAAAOYar1QXkFQcOHFDdunXl7++vCRMmKDIyUpcuXdLixYvVu3dv/fXXX07t16xZo7p160qSVq1a5fg3AAAAAAD3IgKKLPLiiy/KZrNp7dq18vLycsyvUKGCunfvnqb977//rsGDB0uSfvvtN7Vu3fqu1QoAAAAAQE7DJR5Z4NSpU1q0aJF69+7tFE6k8vf3lyR9/fXX8vf3l7+/v9auXaunnnpK/v7++umnnzRw4ED5+/vr66+/vuF2kpOTlZSU5DQBAAAAAJAXEFBkgT179sgYo4iIiJu2a9eunWJjYzVx4kSVL19eW7Zs0ZdffqnAwEBt3bpVsbGxateu3Q3XHzNmjPz8/BxTSEhIVu8KAAAAAACWIKDIAsaYDLXz9vZWWFiYNmzYoPbt2yssLExbtmxRq1atFBYWprCwMHl7e99w/SFDhigxMdExHT58OKt2AQAAAAAAS3EPiixQunRp2Wy2NDfCvNahQ4dUvnx5SdKFCxfk6uqqDz74QMnJyXJxcdHs2bP15JNPaurUqTfsw263y263Z3n9AAAAAABYjYAiCxQsWFBRUVGaPHmyXn755TT3oUhISFBwcLBiY2N19OhRNW3aVLGxsbpy5YqqVKmiVatWqWDBgvL19bVoDwAAAAAAsBaXeGSRyZMn68qVK6pVq5b+7//+T7t379aOHTv04Ycfqnbt2nJ1dVWpUqX0999/6/7771dERITi4+MVHh6uWrVqqVSpUipSpIjVuwEAAAAAgCUYQZFFwsPDtWHDBo0ePVoDBgxQXFycAgICVL16dU2ZMsXRbvny5apfv74kacWKFY5/AwAAAABwL7OZjN7hETlOUlKS/Pz8VLnPVOWz57e6HAAAcr2YCV2tLgEAgBwt9XtoYmJilt+mgEs8AAAAAACA5QgoAAAAAACA5QgoAAAAAACA5QgoAAAAAACA5QgoAAAAAACA5QgoAAAAAACA5QgoAAAAAACA5QgoAAAAAACA5QgoAAAAAACA5QgoAAAAAACA5QgoAAAAAACA5QgoAAAAAACA5VytLgB3buXbneXr62t1GQAAAAAA3DZGUAAAAAAAAMsRUAAAAAAAAMsRUAAAAAAAAMsRUAAAAAAAAMsRUAAAAAAAAMsRUAAAAAAAAMsRUAAAAAAAAMsRUAAAAAAAAMu5Wl0A7lz9od8onz2/1WUAACwWM6Gr1SUAAADcNkZQAAAAAAAAyxFQAAAAAAAAyxFQAAAAAAAAyxFQAAAAAAAAyxFQAAAAAAAAyxFQAAAAAAAAyxFQAAAAAAAAyxFQAAAAAAAAyxFQAAAAAAAAyxFQAAAAAAAAyxFQAAAAAAAAyxFQAAAAAAAAyxFQAAAAAAAAyxFQZINu3bqpQ4cOVpcBAAAAAECuYVlAYbPZbjqNGDEi22s4ceKEXnjhBRUvXlx2u11BQUGKiorS6tWr76jfDz74QDNmzMjUOmFhYXr//ffvaLsAAAAAAORWrlZtOC4uzvHvOXPm6M0339TOnTsd87y9vbO9hkceeUQXL17UF198ofDwcB07dkzR0dGKj4+/rf6uXLkim80mPz+/LK4UAAAAAIC8zbIRFEFBQY7Jz89PNptNQUFB8vHxUZkyZbRo0SKn9vPnz5eXl5fOnDmjAwcOyGazafbs2apTp448PDxUsWJFrVixwmmdrVu3qmXLlvL29lZgYKCeeuopnTx5UpKUkJCgVatWady4cWrUqJFCQ0NVq1YtDRkyRO3atXP0kZCQoF69eikwMNCxnR9++EGSNGPGDPn7+2vhwoUqX7687Ha7Dh06lOYSj4YNG+qll17SSy+9JD8/PxUuXFjDhg2TMcax/ODBg3rllVccI0jSk5ycrKSkJKcJAAAAAIC8IMfdg8LLy0udOnXS9OnTneZPnz5djz76qHx8fBzzBg0apAEDBmjjxo2qXbu22rZt6xj9kJCQoMaNG6tq1apav369Fi1apGPHjunxxx+XdHWEhre3t+bPn6/k5OR0a0lJSVHLli21evVqzZw5U9u3b9fYsWOVL18+R5vz589r3LhxmjZtmrZt26YiRYqk29cXX3whV1dXrV27Vh988IHeffddTZs2TZL0v//9T8WKFdOoUaMUFxfnNLrkWmPGjJGfn59jCgkJyeBRBQAAAAAgZ7PsEo+b6dGjh+rUqaO4uDgVLVpUx48f108//aSlS5c6tXvppZf0yCOPSJKmTJmiRYsW6b///a9effVVffTRR6patar+85//ONp//vnnCgkJ0a5du1SmTBnNmDFDPXv21NSpU1WtWjU1aNBAnTp1UqVKlSRJS5cu1dq1a7Vjxw6VKVNGkhQeHu5Uw6VLl/Txxx+rcuXKN92nkJAQvffee7LZbCpbtqy2bNmi9957Tz179lTBggWVL18++fj4KCgo6IZ9DBkyRP3793e8TkpKIqQAAAAAAOQJOW4EhSTVqlVLFSpU0BdffCFJmjlzpkJDQ1W/fn2ndrVr13b829XVVTVq1NCOHTskSZs2bdKyZcscIyW8vb0VEREhSdq7d6+kq/eg+Oeff7Rw4UK1aNFCy5cvV7Vq1Rw3uIyNjVWxYsUc4UR63N3dHYHGzTzwwANOl27Url1bu3fv1pUrVzJwRK6y2+3y9fV1mgAAAAAAyAtyZEAhXR1FkRoUTJ8+Xc8888wN782QnrNnz6pt27aKjY11mnbv3u0UdHh4eKhZs2YaNmyYfv/9d3Xr1k3Dhw+XJOXPn/+W28mfP3+m6gIAAAAAAGnl2IDiySef1MGDB/Xhhx9q+/btevrpp9O0+eOPPxz/vnz5smJiYlSuXDlJUrVq1bRt2zaFhYWpVKlSTpOXl9cNt1u+fHmdO3dOklSpUiX9/fff2rVr1x3vz59//pmm9tKlSzvuZ+Hu7p6p0RQAAAAAAOQlOTagKFCggB5++GENGjRIzZs3V7FixdK0mTx5subNm6e//vpLvXv31unTp9W9e3dJUu/evXXq1Cl17txZ69at0969e7V48WI988wzunLliuLj49W4cWPNnDlTmzdv1v79+zV37lyNHz9e7du3lyQ1aNBA9evX1yOPPKIlS5Zo//79+vnnn9M8YSQjDh06pP79+2vnzp365ptvNGnSJPXt29exPCwsTCtXrtSRI0ccTxoBAAAAAOBekSNvkpnq2Wef1ddff+0IHa43duxYjR07VrGxsSpVqpQWLlyowoULS5KCg4O1evVqvfbaa2revLmSk5MVGhqqFi1ayMXFRd7e3rr//vv13nvvae/evbp06ZJCQkLUs2dPvf76645t/N///Z8GDhyozp0769y5cypVqpTGjh2b6X3p2rWr/v33X9WqVUv58uVT37599dxzzzmWjxo1Sr169VLJkiWVnJzseAQpAAAAAAD3ApvJwd+Ev/rqK73yyiv6559/5O7u7ph/4MABlShRQhs3blSVKlWsKzCDGjZsqCpVquj999/P0n6TkpLk5+enyn2mKp/91vfLAADkbTETulpdAgAAyONSv4cmJiZm+YMbcuQIivPnzysuLk5jx45Vr169nMIJAAAAAACQ9+TIe1CMHz9eERERCgoK0pAhQ6wuBwAAAAAAZLMcfYkHbo5LPAAA1+ISDwAAkN2y8xKPHDmCAgAAAAAA3FsIKAAAAAAAgOUIKAAAAAAAgOUIKAAAAAAAgOUIKAAAAAAAgOUIKAAAAAAAgOUIKAAAAAAAgOUIKAAAAAAAgOVcrS4Ad27l253l6+trdRkAAAAAANw2RlAAAAAAAADLEVAAAAAAAADLEVAAAAAAAADLEVAAAAAAAADLEVAAAAAAAADLEVAAAAAAAADLEVAAAAAAAADLEVAAAAAAAADLuVpdAO5c/aHfKJ89v9VlAMA9L2ZCV6tLAAAAyLUYQQEAAAAAACxHQAEAAAAAACxHQAEAAAAAACxHQAEAAAAAACxHQAEAAAAAACxHQAEAAAAAACxHQAEAAAAAACxHQAEAAAAAACxHQAEAAAAAACxHQAEAAAAAACxHQAEAAAAAACxHQAEAAAAAACxHQAEAAAAAACxHQAEAAAAAACxHQJFNjh49qr59+6pUqVLy8PBQYGCg6tatqylTpuj8+fNWlwcAAAAAQI7ianUBedG+fftUt25d+fv76z//+Y8iIyNlt9u1ZcsWffrpp7rvvvvUrl07q8sEAAAAACDHIKDIBi+++KJcXV21fv16eXl5OeaHh4erffv2MsZIkg4dOqQ+ffooOjpaLi4uatGihSZNmqTAwECrSgcAAAAAwBJc4pHF4uPj9csvv6h3795O4cS1bDabUlJS1L59e506dUorVqzQkiVLtG/fPnXs2PGGfScnJyspKclpAgAAAAAgL2AERRbbs2ePjDEqW7as0/zChQvrwoULkqTevXuradOm2rJli/bv36+QkBBJ0pdffqkKFSpo3bp1qlmzZpq+x4wZo5EjR2b/TgAAAAAAcJcxguIuWbt2rWJjY1WhQgUlJydrx44dCgkJcYQTklS+fHn5+/trx44d6fYxZMgQJSYmOqbDhw/frfIBAAAAAMhWjKDIYqVKlZLNZtPOnTud5oeHh0uS8ufPf9t92+122e32O6oPAAAAAICciBEUWaxQoUJq1qyZPvroI507d+6G7cqVK6fDhw87jYLYvn27EhISVL58+btRKgAAAAAAOQYBRTb4+OOPdfnyZdWoUUNz5szRjh07tHPnTs2cOVN//fWX8uXLp6ZNmyoyMlJdunTRhg0btHbtWnXt2lUNGjRQjRo1rN4FAAAAAADuKi7xyAYlS5bUxo0b9Z///EdDhgzR33//LbvdrvLly2vgwIF68cUXZbPZtGDBAvXp00f169d3eswoAAAAAAD3GpsxxlhdBG5PUlKS/Pz8VLnPVOWz3/69LQAAWSNmQlerSwAAAMhWqd9DExMT5evrm6V9c4kHAAAAAACwHAEFAAAAAACwHAEFAAAAAACwHAEFAAAAAACwHAEFAAAAAACwHAEFAAAAAACwHAEFAAAAAACwHAEFAAAAAACwHAEFAAAAAACwHAEFAAAAAACwHAEFAAAAAACwnKvVBeDOrXy7s3x9fa0uAwAAAACA28YICgAAAAAAYDkCCgAAAAAAYDkCCgAAAAAAYDnuQZGLGWMkSUlJSRZXAgAAAAC4F6R+/0z9PpqVCChysfj4eElSSEiIxZUAAAAAAO4lZ86ckZ+fX5b2SUCRixUsWFCSdOjQoSz/wcDdlZSUpJCQEB0+fJgnsuRynMu8g3OZd3Au8w7OZd7C+cw7OJd5R0bOpTFGZ86cUXBwcJZvn4AiF3NxuXoLET8/Pz4I8ghfX1/OZR7Bucw7OJd5B+cy7+Bc5i2cz7yDc5l33OpcZtcfyLlJJgAAAAAAsBwBBQAAAAAAsBwBRS5mt9s1fPhw2e12q0vBHeJc5h2cy7yDc5l3cC7zDs5l3sL5zDs4l3mH1efSZrLj2SAAAAAAAACZwAgKAAAAAABgOQIKAAAAAABgOQIKAAAAAABgOQIKAAAAAABgOQKKXGry5MkKCwuTh4eH7r//fq1du9bqku5pI0aMkM1mc5oiIiIcyy9cuKDevXurUKFC8vb21iOPPKJjx4459XHo0CG1bt1anp6eKlKkiAYNGqTLly87tVm+fLmqVasmu92uUqVKacaMGXdj9/K8lStXqm3btgoODpbNZtP8+fOdlhtj9Oabb6po0aLKnz+/mjZtqt27dzu1OXXqlLp06SJfX1/5+/vr2Wef1dmzZ53abN68WfXq1ZOHh4dCQkI0fvz4NLXMnTtXERER8vDwUGRkpH766acs39+87Fbnslu3bmneqy1atHBqw7m03pgxY1SzZk35+PioSJEi6tChg3bu3OnU5m5+rvI7985k5Hw2bNgwzXvz+eefd2rD+bTelClTVKlSJfn6+srX11e1a9fWzz//7FjO+zL3uNW55D2Ze40dO1Y2m039+vVzzMtV702DXGf27NnG3d3dfP7552bbtm2mZ8+ext/f3xw7dszq0u5Zw4cPNxUqVDBxcXGO6cSJE47lzz//vAkJCTHR0dFm/fr15oEHHjB16tRxLL98+bKpWLGiadq0qdm4caP56aefTOHChc2QIUMcbfbt22c8PT1N//79zfbt282kSZNMvnz5zKJFi+7qvuZFP/30k3njjTfM//73PyPJzJs3z2n52LFjjZ+fn5k/f77ZtGmTadeunSlRooT5999/HW1atGhhKleubP744w+zatUqU6pUKdO5c2fH8sTERBMYGGi6dOlitm7dar755huTP39+88knnzjarF692uTLl8+MHz/ebN++3QwdOtS4ubmZLVu2ZPsxyCtudS6ffvpp06JFC6f36qlTp5zacC6tFxUVZaZPn262bt1qYmNjTatWrUzx4sXN2bNnHW3u1ucqv3PvXEbOZ4MGDUzPnj2d3puJiYmO5ZzPnGHhwoXmxx9/NLt27TI7d+40r7/+unFzczNbt241xvC+zE1udS55T+ZOa9euNWFhYaZSpUqmb9++jvm56b1JQJEL1apVy/Tu3dvx+sqVKyY4ONiMGTPGwqrubcOHDzeVK1dOd1lCQoJxc3Mzc+fOdczbsWOHkWTWrFljjLn6pcrFxcUcPXrU0WbKlCnG19fXJCcnG2OMefXVV02FChWc+u7YsaOJiorK4r25t13/pTYlJcUEBQWZCRMmOOYlJCQYu91uvvnmG2OMMdu3bzeSzLp16xxtfv75Z2Oz2cyRI0eMMcZ8/PHHpkCBAo7zaYwxr732milbtqzj9eOPP25at27tVM/9999vevXqlaX7eK+4UUDRvn37G67DucyZjh8/biSZFStWGGPu7ucqv3Oz3vXn05irX4au/c/09TifOVeBAgXMtGnTeF/mAann0hjek7nRmTNnTOnSpc2SJUuczl9ue29yiUcuc/HiRcXExKhp06aOeS4uLmratKnWrFljYWXYvXu3goODFR4eri5duujQoUOSpJiYGF26dMnpnEVERKh48eKOc7ZmzRpFRkYqMDDQ0SYqKkpJSUnatm2bo821faS24bxnr/379+vo0aNOx97Pz0/333+/0/nz9/dXjRo1HG2aNm0qFxcX/fnnn4429evXl7u7u6NNVFSUdu7cqdOnTzvacI6z3/Lly1WkSBGVLVtWL7zwguLj4x3LOJc5U2JioiSpYMGCku7e5yq/c7PH9ecz1axZs1S4cGFVrFhRQ4YM0fnz5x3LOJ85z5UrVzR79mydO3dOtWvX5n2Zi11/LlPxnsxdevfurdatW6c55rntvema4ZbIEU6ePKkrV644/fBIUmBgoP766y+LqsL999+vGTNmqGzZsoqLi9PIkSNVr149bd26VUePHpW7u7v8/f2d1gkMDNTRo0clSUePHk33nKYuu1mbpKQk/fvvv8qfP3827d29LfX4p3fsrz03RYoUcVru6uqqggULOrUpUaJEmj5SlxUoUOCG5zi1D9y5Fi1a6OGHH1aJEiW0d+9evf7662rZsqXWrFmjfPnycS5zoJSUFPXr109169ZVxYoVJemufa6ePn2a37lZLL3zKUlPPPGEQkNDFRwcrM2bN+u1117Tzp079b///U8S5zMn2bJli2rXrq0LFy7I29tb8+bNU/ny5RUbG8v7Mpe50bmUeE/mNrNnz9aGDRu0bt26NMty2+9MAgogC7Rs2dLx70qVKun+++9XaGiovv32W4IDIAfp1KmT49+RkZGqVKmSSpYsqeXLl6tJkyYWVoYb6d27t7Zu3arffvvN6lKQBW50Pp977jnHvyMjI1W0aFE1adJEe/fuVcmSJe92mbiJsmXLKjY2VomJifruu+/09NNPa8WKFVaXhdtwo3NZvnx53pO5yOHDh9W3b18tWbJEHh4eVpdzx7jEI5cpXLiw8uXLl+auq8eOHVNQUJBFVeF6/v7+KlOmjPbs2aOgoCBdvHhRCQkJTm2uPWdBQUHpntPUZTdr4+vrSwiSjVKP/83ec0FBQTp+/LjT8suXL+vUqVNZco55b2ef8PBwFS5cWHv27JHEucxpXnrpJf3www9atmyZihUr5ph/tz5X+Z2btW50PtNz//33S5LTe5PzmTO4u7urVKlSql69usaMGaPKlSvrgw8+4H2ZC93oXKaH92TOFRMTo+PHj6tatWpydXWVq6urVqxYoQ8//FCurq4KDAzMVe9NAopcxt3dXdWrV1d0dLRjXkpKiqKjo52uGYO1zp49q71796po0aKqXr263NzcnM7Zzp07dejQIcc5q127trZs2eL0xWjJkiXy9fV1DLWrXbu2Ux+pbTjv2atEiRIKCgpyOvZJSUn6888/nc5fQkKCYmJiHG1+/fVXpaSkOH6h165dWytXrtSlS5ccbZYsWaKyZcuqQIECjjac47vr77//Vnx8vIoWLSqJc5lTGGP00ksvad68efr111/TXFJztz5X+Z2bNW51PtMTGxsrSU7vTc5nzpSSkqLk5GTel3lA6rlMD+/JnKtJkybasmWLYmNjHVONGjXUpUsXx79z1Xszw7fTRI4xe/ZsY7fbzYwZM8z27dvNc889Z/z9/Z3uuoq7a8CAAWb58uVm//79ZvXq1aZp06amcOHC5vjx48aYq4/2KV68uPn111/N+vXrTe3atU3t2rUd66c+2qd58+YmNjbWLFq0yAQEBKT7aJ9BgwaZHTt2mMmTJ/OY0Sxy5swZs3HjRrNx40Yjybz77rtm48aN5uDBg8aYq48Z9ff3NwsWLDCbN2827du3T/cxo1WrVjV//vmn+e2330zp0qWdHk2ZkJBgAgMDzVNPPWW2bt1qZs+ebTw9PdM8mtLV1dVMnDjR7NixwwwfPpxHU2bSzc7lmTNnzMCBA82aNWvM/v37zdKlS021atVM6dKlzYULFxx9cC6t98ILLxg/Pz+zfPlyp0fcnT9/3tHmbn2u8jv3zt3qfO7Zs8eMGjXKrF+/3uzfv98sWLDAhIeHm/r16zv64HzmDIMHDzYrVqww+/fvN5s3bzaDBw82NpvN/PLLL8YY3pe5yc3OJe/J3O/6p7DkpvcmAUUuNWnSJFO8eHHj7u5uatWqZf744w+rS7qndezY0RQtWtS4u7ub++67z3Ts2NHs2bPHsfzff/81L774oilQoIDx9PQ0Dz30kImLi3Pq48CBA6Zly5Ymf/78pnDhwmbAgAHm0qVLTm2WLVtmqlSpYtzd3U14eLiZPn363di9PG/ZsmVGUprp6aefNsZcfdTosGHDTGBgoLHb7aZJkyZm586dTn3Ex8ebzp07G29vb+Pr62ueeeYZc+bMGac2mzZtMg8++KCx2+3mvvvuM2PHjk1Ty7fffmvKlClj3N3dTYUKFcyPP/6YbfudF93sXJ4/f940b97cBAQEGDc3NxMaGmp69uyZ5pcm59J66Z1DSU6feXfzc5XfuXfmVufz0KFDpn79+qZgwYLGbrebUqVKmUGDBpnExESnfjif1uvevbsJDQ017u7uJiAgwDRp0sQRThjD+zI3udm55D2Z+10fUOSm96bNGGMyPt4CAAAAAAAg63EPCgAAAAAAYDkCCgAAAAAAYDkCCgAAAAAAYDkCCgAAAAAAYDkCCgAAAAAAYDkCCgAAAAAAYDkCCgAAAAAAYDkCCgAAAAAAYDkCCgAAAAAAYDkCCgAAkKscPXpUffr0UXh4uOx2u0JCQtS2bVtFR0ff1TpsNpvmz59/V7cJAEBe5mp1AQAAABl14MAB1a1bV/7+/powYYIiIyN16dIlLV68WL1799Zff/1ldYkAAOA22YwxxuoiAAAAMqJVq1bavHmzdu7cKS8vL6dlCQkJ8vf316FDh9SnTx9FR0fLxcVFLVq00KRJkxQYGChJ6tatmxISEpxGP/Tr10+xsbFavny5JKlhw4aqVKmSPDw8NG3aNLm7u+v555/XiBEjJElhYWE6ePCgY/3Q0FAdOHAgO3cdAIA8j0s8AABArnDq1CktWrRIvXv3ThNOSJK/v79SUlLUvn17nTp1SitWrNCSJUu0b98+dezYMdPb++KLL+Tl5aU///xT48eP16hRo7RkyRJJ0rp16yRJ06dPV1xcnOM1AAC4fVziAQAAcoU9e/bIGKOIiIgbtomOjtaWLVu0f/9+hYSESJK+/PJLVahQQevWrVPNmjUzvL1KlSpp+PDhkqTSpUvro48+UnR0tJo1a6aAgABJV0ORoKCgO9grAACQihEUAAAgV8jIVak7duxQSEiII5yQpPLly8vf3187duzI1PYqVark9Lpo0aI6fvx4pvoAAAAZR0ABAAByhdKlS8tms93xjTBdXFzShB2XLl1K087Nzc3ptc1mU0pKyh1tGwAA3BgBBQAAyBUKFiyoqKgoTZ48WefOnUuzPCEhQeXKldPhw4d1+PBhx/zt27crISFB5cuXlyQFBAQoLi7Oad3Y2NhM1+Pm5qYrV65kej0AAJA+AgoAAJBrTJ48WVeuXFGtWrX0f//3f9q9e7d27NihDz/8ULVr11bTpk0VGRmpLl26aMOGDVq7dq26du2qBg0aqEaNGpKkxo0ba/369fryyy+1e/duDR8+XFu3bs10LWFhYYqOjtbRo0d1+vTprN5VAADuOQQUAAAg1wgPD9eGDRvUqFEjDRgwQBUrVlSzZs0UHR2tKVOmyGazacGCBSpQoIDq16+vpk2bKjw8XHPmzHH0ERUVpWHDhunVV19VzZo1debMGXXt2jXTtbzzzjtasmSJQkJCVLVq1azcTQAA7kk2k5E7TgEAAAAAAGQjRlAAAAAAAADLEVAAAAAAAADLEVAAAAAAAADLEVAAAAAAAADLEVAAAAAAAADLEVAAAAAAAADLEVAAAAAAAADLEVAAAAAAAADLEVAAAAAAAADLEVAAAAAAAADLEVAAAAAAAADL/X9luXrlDi9nsQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Combine worked with and desired next year for comparison\n", + "combined_df = tech_df.melt(value_vars=['LanguageWorkedWith', 'LanguageDesireNextYear'],\n", + " var_name='Category', value_name='Technologies')" + ], + "metadata": { + "id": "SbeEvX6vgmhO" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Split the technologies into individual entries\n", + "combined_df['Technologies'] = combined_df['Technologies'].str.split(';')\n", + "combined_df = combined_df.explode('Technologies')" + ], + "metadata": { + "id": "9St3jitbgmkY" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Group by category and technology to get counts\n", + "trend_df = combined_df.groupby(['Category', 'Technologies']).size().reset_index(name='Count')" + ], + "metadata": { + "id": "9Icdl05xhRIm" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Pivot the data for comparison\n", + "trend_pivot = trend_df.pivot(index='Technologies', columns='Category', values='Count').fillna(0)" + ], + "metadata": { + "id": "8I_yfm2Zgi38" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Calculate the change in preference\n", + "trend_pivot['Change'] = trend_pivot['LanguageDesireNextYear'] - trend_pivot['LanguageWorkedWith']" + ], + "metadata": { + "id": "p52QXd_mgjA8" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Sort by the change\n", + "trend_pivot = trend_pivot.sort_values(by='Change', ascending=False)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "FYXaCE-xfvyC", + "outputId": "d0b4fe1a-a8dd-4d9f-b7ac-98f6ab97d22f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Category LanguageDesireNextYear LanguageWorkedWith Change\n", + "Technologies \n", + "Go 15529 5532 9997\n", + "Kotlin 11992 3508 8484\n", + "Rust 7857 1857 6000\n", + "Swift 9708 6310 3398\n", + "TypeScript 16896 13626 3270\n", + "Haskell 5117 1961 3156\n", + "Scala 6219 3420 2799\n", + "F# 3752 1115 2637\n", + "Python 32795 30359 2436\n", + "R 7041 4813 2228\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Display the top 10 technologies with the highest increase in preference\n", + "print(trend_pivot.head(10))" + ], + "metadata": { + "id": "9m_DGc5Xh6at" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Plot the change in preference for the top 10 technologies\n", + "plt.figure(figsize=(12, 6))\n", + "sns.barplot(x=trend_pivot['Change'].head(10), y=trend_pivot.index[:10])\n", + "plt.title('Top 10 Technologies with Highest Increase in Preference')\n", + "plt.xlabel('Change in Preference')\n", + "plt.ylabel('Technology')\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 564 + }, + "id": "0_IdaPLhfv06", + "outputId": "03c9c4e5-eebf-4ea4-f566-58e5cfe96c11" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBsAAAIjCAYAAABCuxM+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnpElEQVR4nO3dd3gUVf/+8XuTkE1IpYSEEhJ67wgC0pGABRAU4UEhKEVBQFFQFKT4KFUBFUEsBAHlkaoiRaogKk1CEQSkC6EIkoQWSHJ+f/DLflmSQAKTLMH367r2utiZM7Of2TkbsnfOnLEZY4wAAAAAAAAs4ubqAgAAAAAAwL2FsAEAAAAAAFiKsAEAAAAAAFiKsAEAAAAAAFiKsAEAAAAAAFiKsAEAAAAAAFiKsAEAAAAAAFiKsAEAAAAAAFiKsAEAAAAAAFiKsAEAkKMcOnRINptN48aNc8nrh4eHKzIyMktfIzIyUuHh4Vn6GlZIORdRUVEZbpud561Ro0Zq1KjRbW9bsWJFawuCS91Jf7gbjB07VsWLF5e7u7uqVq3q6nIA4JYIGwAgC9hstgw91qxZk+W1TJ48WU888YSKFi0qm8120y/K586dU48ePRQUFCQfHx81btxYv/322033HxUVlaFjzQlfnnHnFi9erGHDhlm+3zVr1shms2nu3Llpro+MjJSvr6/lr5udjh8/rmHDhik6OjpD7VM+e5s3b87awpCmG3/2eXl5qXTp0nrhhRd08uRJS1/rhx9+0MCBA1WvXj1NmzZN77zzjqX7B4Cs4OHqAgDgXjRjxgyn51988YWWL1+eanm5cuWyvJbRo0crPj5etWrVUkxMTLrtkpOT9fDDD2vbtm0aMGCA8ufPr48++kiNGjXSli1bVKpUqTS3a9CgQarj6tatm2rVqqUePXo4luX0L4LZ6ZNPPlFycrKry7ilsLAwXbp0Sbly5XIsW7x4sSZNmpQlgUNm/fDDD64uIVOOHz+u4cOHKzw8nL9cZ4Gs6g8jRoxQsWLFdPnyZf3000+aPHmyFi9erJ07dyp37tyWvMaqVavk5uamzz77TJ6enpbsEwCyGmEDAGSBp556yun5r7/+quXLl6danh1+/PFHx6iGm33hnzt3rn7++WfNmTNHjz/+uCSpffv2Kl26tIYOHaovv/wyze2KFy+u4sWLOy177rnnVLx4cZcc773g+i/vd7OUv+berfhSZr3k5GRduXLlrj7v6cmq/tCyZUvVrFlT0rWgNV++fHrvvff0zTffqGPHjmluc+HCBfn4+GT4NU6dOiVvb29Lj+HixYuWhSEAkBYuowAAF7lw4YJefvllhYaGym63q0yZMho3bpyMMU7tbDabXnjhBc2aNUtlypSRl5eXatSoobVr12bodcLCwmSz2W7Zbu7cuQoODlbbtm0dy4KCgtS+fXt98803SkhIyNwB3uDYsWN65plnFBwcLLvdrgoVKujzzz9P1e7y5csaNmyYSpcuLS8vLxUsWFBt27bV/v37U7WdOnWqSpQoIbvdrvvuu0+bNm1yWp8ytP7YsWNq06aNfH19FRQUpFdeeUVJSUlObTN6PtJy4MABPfHEE8qbN69y586t+++/X99//32qdocPH1arVq3k4+OjAgUK6KWXXtKyZctSXVKT1pwNycnJmjBhgipUqCAvLy8FBwerZ8+e+ueff5zabd68WREREcqfP7+8vb1VrFgxPfPMMzetv3///sqXL5/Tsfbp00c2m03vv/++Y9nJkydls9k0efJkSannbIiMjNSkSZMkOV9KdKNbnTerpHWNfkbPQYpdu3apcePGyp07twoXLqwxY8akapOQkKChQ4eqZMmSstvtCg0N1cCBA1N9ZpYvX64HHnhAgYGB8vX1VZkyZfT6669LunaZyH333SdJ6tq1q+O9y8h8GNfLTJ9PTk7WxIkTValSJXl5eSkoKEgtWrRwuizj+p8/FSpUkN1u19KlSyVl7DN95coVvfnmm6pRo4YCAgLk4+Oj+vXra/Xq1alqnz17tmrUqCE/Pz/5+/urUqVKmjhxolObc+fO6cUXX3R8TkuWLKnRo0dnaCTQjf0h5dKcr7/+Wm+//baKFCkiLy8vNW3aVH/++ect95eeJk2aSJIOHjwo6f/Oyf79+/XQQw/Jz89PnTp1kpSxz7XNZtO0adN04cKFNPvFzJkzVaNGDXl7eytv3rzq0KGDjh49murYK1asqC1btqhBgwbKnTu3o+9ltP+m9IWFCxeqYsWKjnOe0h+ud+zYMT377LMqVKiQ7Ha7ihUrpueff15XrlxxtLmTcwkgZ2BkAwC4gDFGrVq10urVq/Xss8+qatWqWrZsmQYMGKBjx45p/PjxTu1//PFH/e9//1Pfvn1lt9v10UcfqUWLFtq4caNlk9ht3bpV1atXl5ubcw5dq1YtTZ06VXv37lWlSpVua98nT57U/fff7/hlNSgoSEuWLNGzzz6ruLg4vfjii5KkpKQkPfLII1q5cqU6dOigfv36KT4+XsuXL9fOnTtVokQJxz6//PJLxcfHq2fPnrLZbBozZozatm2rAwcOOI0MSEpKUkREhGrXrq1x48ZpxYoVevfdd1WiRAk9//zzkjJ/Pm48trp16+rixYvq27ev8uXLp+nTp6tVq1aaO3euHnvsMUnXwowmTZooJiZG/fr1U0hIiL788ss0v3SlpWfPnoqKilLXrl3Vt29fHTx4UB9++KG2bt2q9evXK1euXDp16pSaN2+uoKAgvfbaawoMDNShQ4c0f/78m+67fv36Gj9+vH7//XdHf1q3bp3c3Ny0bt069e3b17FMunbpTHo1Hj9+PM1LhlJk9LylJz4+Xn///Xeq5RkJwzJ7Dv755x+1aNFCbdu2Vfv27TV37ly9+uqrqlSpklq2bCnp2pfFVq1a6aefflKPHj1Urlw57dixQ+PHj9fevXu1cOFCSdLvv/+uRx55RJUrV9aIESNkt9v1559/av369ZKuXVI1YsQIvfnmm+rRo4fq168vSapbt+4tj+tGGenzkvTss88qKipKLVu2VLdu3ZSYmKh169bp119/dfylXro2hP/rr7/WCy+8oPz58ys8PDzDn+m4uDh9+umn6tixo7p37674+Hh99tlnioiI0MaNGx2XiyxfvlwdO3ZU06ZNNXr0aEnS7t27tX79evXr10/Stb/EN2zYUMeOHVPPnj1VtGhR/fzzzxo0aJBiYmI0YcKETL9XkjRq1Ci5ubnplVdeUWxsrMaMGaNOnTppw4YNt7W/lGA0X758jmWJiYmKiIjQAw88oHHjxjlGFGTkcz1jxgxNnTpVGzdu1Keffirp//rF22+/rSFDhqh9+/bq1q2bTp8+rQ8++EANGjTQ1q1bFRgY6KjhzJkzatmypTp06KCnnnpKwcHBGe6/KX766SfNnz9fvXr1kp+fn95//321a9dOR44ccRzv8ePHVatWLcccQGXLltWxY8c0d+5cXbx4UZ6enll2LgHcZQwAIMv17t3bXP8jd+HChUaS+e9//+vU7vHHHzc2m838+eefjmWSjCSzefNmx7LDhw8bLy8v89hjj2WqDh8fH9OlS5d01z3zzDOpln///fdGklm6dOltv86zzz5rChYsaP7++2+ndh06dDABAQHm4sWLxhhjPv/8cyPJvPfee6n2mZycbIwx5uDBg0aSyZcvnzl79qxj/TfffGMkme+++86xrEuXLkaSGTFihNO+qlWrZmrUqOF4npnzERYW5nRsL774opFk1q1b51gWHx9vihUrZsLDw01SUpIxxph3333XSDILFy50tLt06ZIpW7askWRWr17tVHdYWJjj+bp164wkM2vWLKf6li5d6rR8wYIFRpLZtGlTqvfvZk6dOmUkmY8++sgYY8y5c+eMm5ubeeKJJ0xwcLCjXd++fU3evHlTnYtp06Y52tzY11Nk5rylZfXq1Y7PQnoPHx8fp20aNmxoGjZs6HiemXPQsGFDI8l88cUXjmUJCQkmJCTEtGvXzrFsxowZxs3Nzen8G2PMlClTjCSzfv16Y4wx48ePN5LM6dOn0z3GTZs2pXo/b2batGmpzndG+/yqVauMJNO3b99U+005v8Zc+/nj5uZmfv/9d6c2Gf1MJyYmmoSEBKc2//zzjwkODnb6edOvXz/j7+9vEhMT0z3et956y/j4+Ji9e/c6LX/ttdeMu7u7OXLkSLrbGpO6P6T0qXLlyjnVOHHiRCPJ7Nix46b7S3n/V6xYYU6fPm2OHj1qZs+ebfLly2e8vb3NX3/9ZYz5v3Py2muvOW2f0c91yj5u7N+HDh0y7u7u5u2333ZavmPHDuPh4eG0PKU/T5kyxaltRvuvMdf6gqenp9PPw23bthlJ5oMPPnAs69y5s3Fzc0vz51BK37rTcwkgZ+AyCgBwgcWLF8vd3d3xF+MUL7/8sowxWrJkidPyOnXqqEaNGo7nRYsWVevWrbVs2bJUQ6Nv16VLl2S321MtT7k2+9KlS7e1X2OM5s2bp0cffVTGGP3999+OR0REhGJjYx13vJg3b57y58+vPn36pNrPjcPxn3zySeXJk8fxPOUvwQcOHEi17XPPPef0vH79+k7tMns+rrd48WLVqlVLDzzwgGOZr6+vevTooUOHDmnXrl2SpKVLl6pw4cJq1aqVo52Xl5e6d++e7r5TzJkzRwEBAXrwwQed3r8aNWrI19fX8Zf5lL9iLlq0SFevXr3lflMEBQWpbNmyjktz1q9fL3d3dw0YMEAnT57Uvn37JF0b2fDAAw9k6LKc9GTmvKXlzTff1PLly1M9mjdvfsttM3sOfH19neYd8fT0VK1atZxqnTNnjsqVK6eyZcs6nZuUofQ3nptvvvkmW4aJ36rPz5s3TzabTUOHDk217Y3nt2HDhipfvrzjeWY+0+7u7o55BpKTk3X27FklJiaqZs2aTne6CQwM1IULF7R8+fJ0j2nOnDmqX7++8uTJ4/SazZo1U1JSUoYvLbtR165dneZCyGyfbNasmYKCghQaGqoOHTrI19dXCxYsUOHChZ3aXT+qJOV4MvK5Ts/8+fOVnJys9u3bO20fEhKiUqVKpdrebrera9euqWrISP+9/livH2FWuXJl+fv7O96r5ORkLVy4UI8++qjT6JgUKX0rq84lgLsLl1EAgAscPnxYhQoVkp+fn9PylLtTHD582Gl5WneCKF26tC5evKjTp08rJCTkjmvy9vZOcyj65cuXHetvx+nTp3Xu3DlNnTpVU6dOTbPNqVOnJF0bflymTBl5eNz6v6eiRYs6PU/5AnvjHAYp16Lf2Pb6dpk9H9c7fPiwateunWr59dtWrFhRhw8fVokSJVJ9kStZsmS6+06xb98+xcbGqkCBAmmuT3n/GjZsqHbt2mn48OEaP368GjVqpDZt2ug///lPmkHS9erXr6/FixdLuhYq1KxZUzVr1lTevHm1bt06BQcHa9u2bfrPf/5zy3pvJqPnLT2VKlVSs2bNUi2fOXPmLbfN7DkoUqRIqrZ58uTR9u3bHc/37dun3bt3p+pjKVLOzZNPPqlPP/1U3bp102uvvaamTZuqbdu2evzxx1NdunSnMtLn9+/fr0KFCilv3ry33F+xYsWcnmfmMy1J06dP17vvvqs//vjDKQS7fr+9evXS119/rZYtW6pw4cJq3ry52rdvrxYtWjja7Nu3T9u3b7/le51Zd9onJ02apNKlS8vDw0PBwcEqU6ZMqnPq4eGhIkWKOC3L6Oc6Pfv27ZMxJt07Bd14WVLhwoVTTTCZ0f6b4sb3SnLuW6dPn1ZcXNwtL+/LqnMJ4O5C2AAAkCQVLFgwzVtjpiwrVKjQbe035a+4Tz31lLp06ZJmm8qVK2d6v+7u7mkuNzdM6Jheu5wkOTlZBQoU0KxZs9Jcn/ILu81m09y5c/Xrr7/qu+++07Jly/TMM8/o3Xff1a+//nrTu5E88MAD+uSTT3TgwAGtW7dO9evXl81m0wMPPKB169apUKFCSk5OdvzV93Zl9LzdDTJSa3JysipVqqT33nsvzbahoaGSroV1a9eu1erVq/X9999r6dKl+t///qcmTZrohx9+sLSfWt3nbwwaM/OZnjlzpiIjI9WmTRsNGDBABQoUkLu7u0aOHOk06WuBAgUUHR2tZcuWacmSJVqyZImmTZumzp07a/r06Y7XffDBBzVw4MA0X7N06dK3dXx32idr1aqV5l/xr2e321MFEBn9XKcnOTlZNptNS5YsSfMYbvy8pxUYZ7T/prDq85tV5xLA3YWwAQBcICwsTCtWrFB8fLzTX9P/+OMPx/rrpQxjv97evXuVO3fuW/5CmlFVq1bVunXrlJyc7PRL8YYNG5Q7d+7b/uUvKChIfn5+SkpKSvMv0tcrUaKENmzYoKtXr2br7R8zez5u3HbPnj2plt+4bVhYmHbt2iVjjNNfyzMy632JEiW0YsUK1atXL0MjTO6//37df//9evvtt/Xll1+qU6dOmj17trp165buNikhwvLly7Vp0ya99tprkq5NBjl58mQVKlRIPj4+TpfzpOVOLrHIandyDtJTokQJbdu2TU2bNr3lsbu5ualp06Zq2rSp3nvvPb3zzjt64403tHr1ajVr1ixb37sSJUpo2bJlOnv2bIZGN1wvM5/puXPnqnjx4po/f77T8aV1+Yanp6ceffRRPfroo0pOTlavXr308ccfa8iQISpZsqRKlCih8+fP3/I1c4rMfq7T2t4Yo2LFit32z+fM9N+MCAoKkr+/v3bu3HnL172XziWAtDFnAwC4wEMPPaSkpCR9+OGHTsvHjx8vm83mmOk+xS+//OJ0ffPRo0f1zTffqHnz5pb9FfPxxx/XyZMnne5c8Pfff2vOnDl69NFHbzkMPz3u7u5q166d5s2bl+YvoKdPn3b8u127dvr7779TvS9S1v7lO7Pn48ZtN27cqF9++cWx7MKFC5o6darCw8Md17pHRETo2LFj+vbbbx3tLl++rE8++eSW9bVv315JSUl66623Uq1LTEzUuXPnJF0b9n3j+5Qy2/+t7tZQrFgxFS5cWOPHj9fVq1dVr149SddCiP3792vu3Lm6//77b3mJi4+PjyQ5arqb3Mk5SE/79u117NixNPdx6dIlXbhwQZJ09uzZVOtvPDfZ+d61a9dOxhgNHz481bpbfdYy85lO+fl0/T43bNjg9HmRrt0p4Xpubm6O0REp70/79u31yy+/aNmyZale89y5c0pMTLxp3XebjH6u09O2bVu5u7tr+PDhqc6ZMSbVe5peDRnpvxnl5uamNm3a6LvvvnO6her1daW87r10LgGkjZENAOACjz76qBo3bqw33nhDhw4dUpUqVfTDDz/om2++0Ysvvug0AZckVaxYUREREU63vpSU5heFG3333Xfatm2bJOnq1avavn27/vvf/0qSWrVq5fiF/vHHH9f999+vrl27ateuXcqfP78++ugjJSUlZeh1bmbUqFFavXq1ateure7du6t8+fI6e/asfvvtN61YscLxRaxz58764osv1L9/f23cuFH169fXhQsXtGLFCvXq1UutW7e+ozrSk9nzcb3XXntNX331lVq2bKm+ffsqb968mj59ug4ePKh58+Y5Ron07NlTH374oTp27Kh+/fqpYMGCmjVrlmMCzpv9VbFhw4bq2bOnRo4cqejoaDVv3ly5cuXSvn37NGfOHE2cOFGPP/64pk+fro8++kiPPfaYSpQoofj4eH3yySfy9/fXQw89dMv3oX79+po9e7YqVarkuG69evXq8vHx0d69ezM0X0PKyIe+ffsqIiJC7u7u6tChwy23yw53cg7S8/TTT+vrr7/Wc889p9WrV6tevXpKSkrSH3/8oa+//lrLli1TzZo1NWLECK1du1YPP/ywwsLCdOrUKX300UcqUqSIY3LREiVKKDAwUFOmTJGfn598fHxUu3btVHMmWKFx48Z6+umn9f7772vfvn1q0aKFkpOTtW7dOjVu3FgvvPDCTbfP6Gf6kUce0fz58/XYY4/p4Ycf1sGDBzVlyhSVL19e58+fd+yvW7duOnv2rJo0aaIiRYro8OHD+uCDD1S1alXH/CcDBgzQt99+q0ceeUSRkZGqUaOGLly4oB07dmju3Lk6dOiQ8ufPb/l7lVUy+rlOT4kSJfTf//5XgwYN0qFDh9SmTRv5+fnp4MGDWrBggXr06KFXXnnlpjVktP9mxjvvvKMffvhBDRs2dNxOMyYmRnPmzNFPP/2kwMDAe+5cAkhHNt75AgD+tdK6HWB8fLx56aWXTKFChUyuXLlMqVKlzNixY51uO2fMtduN9e7d28ycOdOUKlXK2O12U61aNafb9N1Mym3X0nrceIu9s2fPmmeffdbky5fP5M6d2zRs2DDTt1E0Ju1bbJ48edL07t3bhIaGmly5cpmQkBDTtGlTM3XqVKd2Fy9eNG+88YYpVqyYo93jjz9u9u/fb4z5v1sojh07NtXrSjJDhw51OvYbbxdnjDFDhw697fNx460vjTFm//795vHHHzeBgYHGy8vL1KpVyyxatCjV6x44cMA8/PDDxtvb2wQFBZmXX37ZzJs3z0gyv/76q1Pd19/6MsXUqVNNjRo1jLe3t/Hz8zOVKlUyAwcONMePHzfGGPPbb7+Zjh07mqJFixq73W4KFChgHnnkEafbpt7MpEmTjCTz/PPPOy1v1qyZkWRWrlzptDytW18mJiaaPn36mKCgIGOz2Rzvc2bOW1pSblM4Z86cNNenda5vvNWhMRk/Bw0bNjQVKlRI83VuPDdXrlwxo0ePNhUqVDB2u93kyZPH1KhRwwwfPtzExsYaY4xZuXKlad26tSlUqJDx9PQ0hQoVMh07dkx1679vvvnGlC9f3nh4eNzyNpjp3foyo30+MTHRjB071pQtW9Z4enqaoKAg07JlS7NlyxZHm5SfP2nJyGc6OTnZvPPOOyYsLMzxs2vRokWp3se5c+ea5s2bmwIFChhPT09TtGhR07NnTxMTE+P0mvHx8WbQoEGmZMmSxtPT0+TPn9/UrVvXjBs3zly5ciXd98qY9G99eWOfSqtfpyWt9z8t6Z2TFLf6XN9qH/PmzTMPPPCA8fHxMT4+PqZs2bKmd+/eZs+ePY426fVnYzLWf41Jvy+k9TPx8OHDpnPnziYoKMjY7XZTvHhx07t3b6dbjN7JuQSQM9iMuQtnZAIAONhsNvXu3TvNSwuQ802YMEEvvfSS/vrrr1S3ykP24BwAAGA95mwAACCbXLp0yen55cuX9fHHH6tUqVJ8yc0mnAMAALIHczYAAJBN2rZtq6JFi6pq1aqKjY3VzJkz9ccff6R76ztYj3MAAED2IGwAACCbRERE6NNPP9WsWbOUlJSk8uXLa/bs2XryySddXdq/BucAAIDswZwNAAAAAADAUszZAAAAAAAALEXYAAAAAAAALMWcDTlYcnKyjh8/Lj8/P9lsNleXAwAAAAC4xxljFB8fr0KFCsnNLf3xC4QNOdjx48cVGhrq6jIAAAAAAP8yR48eVZEiRdJdT9iQg/n5+Um6dpL9/f1dXA0AAAAA4F4XFxen0NBQx/fR9BA25GApl074+/sTNgAAAAAAss2tLuVngkgAAAAAAGApRjbcAxoM/krudm9XlwEAAAAAyKQtYzu7uoQswcgGAAAAAABgKcIGAAAAAABgKcIGAAAAAABgKcIGAAAAAABgKcIGAAAAAABgKcIGAAAAAABgKcIGAAAAAABgKcIGAAAAAABgKcIGAAAAAABgKcIGAAAAAABgKcIGAAAAAABgKcIGAAAAAABgKcIGAAAAAABgKcIGAAAAAABgKcKGLHDixAn169dPJUuWlJeXl4KDg1WvXj1NnjxZFy9edHV5AAAAAABkKQ9XF3CvOXDggOrVq6fAwEC98847qlSpkux2u3bs2KGpU6eqcOHCatWqlavLBAAAAAAgyxA2WKxXr17y8PDQ5s2b5ePj41hevHhxtW7dWsYYSdKRI0fUp08frVy5Um5ubmrRooU++OADBQcHu6p0AAAAAAAswWUUFjpz5ox++OEH9e7d2ylouJ7NZlNycrJat26ts2fP6scff9Ty5ct14MABPfnkkzfdf0JCguLi4pweAAAAAADcbRjZYKE///xTxhiVKVPGaXn+/Pl1+fJlSVLv3r3VrFkz7dixQwcPHlRoaKgk6YsvvlCFChW0adMm3XfffWnuf+TIkRo+fHjWHgQAAAAAAHeIkQ3ZYOPGjYqOjlaFChWUkJCg3bt3KzQ01BE0SFL58uUVGBio3bt3p7ufQYMGKTY21vE4evRodpQPAAAAAECmMLLBQiVLlpTNZtOePXuclhcvXlyS5O3tfUf7t9vtstvtd7QPAAAAAACyGiMbLJQvXz49+OCD+vDDD3XhwoV025UrV05Hjx51Gpmwa9cunTt3TuXLl8+OUgEAAAAAyDKEDRb76KOPlJiYqJo1a+p///ufdu/erT179mjmzJn6448/5O7urmbNmqlSpUrq1KmTfvvtN23cuFGdO3dWw4YNVbNmTVcfAgAAAAAAd4TLKCxWokQJbd26Ve+8844GDRqkv/76S3a7XeXLl9crr7yiXr16yWaz6ZtvvlGfPn3UoEEDp1tfAgAAAACQ09mMMcbVReD2xMXFKSAgQFX6TJG7/c7mgwAAAAAAZL8tYzu7uoRMSfkeGhsbK39//3TbcRkFAAAAAACwFGEDAAAAAACwFGEDAAAAAACwFGEDAAAAAACwFGEDAAAAAACwFGEDAAAAAACwFGEDAAAAAACwFGEDAAAAAACwFGEDAAAAAACwFGEDAAAAAACwFGEDAAAAAACwlIerC8CdW/vfjvL393d1GQAAAAAASGJkAwAAAAAAsBhhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsJSHqwvAnWsw+Cu5271dXQYAAACAm9gytrOrSwCyDSMbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbssiwYcNUtWpVx/PIyEi1adPGZfUAAAAAAJBdCBuUdhAwd+5ceXl56d13373l9jabTQsXLrxpm4kTJyoqKur2iwQAAAAAIIfwcHUBd6NPP/1UvXv31pQpU9S1a1dL9hkQEGDJfgAAAAAAuNsxsuEGY8aMUZ8+fTR79mxH0DB58mSVKFFCnp6eKlOmjGbMmOFoHx4eLkl67LHHZLPZHM9vdOPoiUaNGqlv374aOHCg8ubNq5CQEA0bNiyLjgoAAAAAgOxD2HCdV199VW+99ZYWLVqkxx57TJK0YMEC9evXTy+//LJ27typnj17qmvXrlq9erUkadOmTZKkadOmKSYmxvE8I6ZPny4fHx9t2LBBY8aM0YgRI7R8+fJ02yckJCguLs7pAQAAAADA3Yaw4f9bsmSJxowZo2+++UZNmzZ1LB83bpwiIyPVq1cvlS5dWv3791fbtm01btw4SVJQUJAkKTAwUCEhIY7nGVG5cmUNHTpUpUqVUufOnVWzZk2tXLky3fYjR45UQECA4xEaGnqbRwsAAAAAQNYhbPj/KleurPDwcA0dOlTnz593LN+9e7fq1avn1LZevXravXu3Ja95vYIFC+rUqVPpth80aJBiY2Mdj6NHj95xDQAAAAAAWI2w4f8rXLiw1qxZo2PHjqlFixaKj4/P8tfMlSuX03Obzabk5OR029vtdvn7+zs9AAAAAAC42xA2XCcsLEw//vijTpw44QgcypUrp/Xr1zu1W79+vcqXL+94nitXLiUlJWV3uQAAAAAA3JW49eUNQkNDtWbNGjVu3FgRERF67rnn1K1bN1WrVk3NmjXTd999p/nz52vFihWObcLDw7Vy5UrVq1dPdrtdefLkceERAAAAAADgWoxsSEORIkW0Zs0a/f3335o8ebLGjh2rcePGqUKFCvr44481bdo0NWrUyNH+3Xff1fLlyxUaGqpq1aq5rnAAAAAAAO4CNmOMcXURuD1xcXEKCAhQlT5T5G73dnU5AAAAAG5iy9jOri4BuGMp30NjY2NvOo8gIxsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClPFxdAO7c2v92lL+/v6vLAAAAAABAEiMbAAAAAACAxQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApTxcXQDuXIPBX8nd7u3qMgAAQA60ZWxnV5cAALgHMbIBAAAAAABYirABAAAAAABYirABAAAAAABYirABAAAAAABYirABAAAAAABYirABAAAAAABYirABAAAAAABYirABAAAAAABYirABAAAAAABYirABAAAAAABYirABAAAAAABYirABAAAAAABYirABAAAAAABYirAhAyIjI2Wz2WSz2ZQrVy4VK1ZMAwcO1OXLly3Zf3h4uCZMmGDJvgAAAAAAcDUPVxeQU7Ro0ULTpk3T1atXtWXLFnXp0kU2m02jR492dWkAAAAAANxVGNmQQXa7XSEhIQoNDVWbNm3UrFkzLV++XFLaIxOqVq2qYcOGSZKMMRo2bJiKFi0qu92uQoUKqW/fvpKkRo0a6fDhw3rppZccoycAAAAAAMjJGNlwG3bu3Kmff/5ZYWFhGWo/b948jR8/XrNnz1aFChV04sQJbdu2TZI0f/58ValSRT169FD37t1vup+EhAQlJCQ4nsfFxd3+QQAAAAAAkEUIGzJo0aJF8vX1VWJiohISEuTm5qYPP/wwQ9seOXJEISEhatasmXLlyqWiRYuqVq1akqS8efPK3d1dfn5+CgkJuel+Ro4cqeHDh9/xsQAAAAAAkJW4jCKDGjdurOjoaG3YsEFdunRR165d1a5duwxt+8QTT+jSpUsqXry4unfvrgULFigxMTHTNQwaNEixsbGOx9GjRzO9DwAAAAAAshphQwb5+PioZMmSqlKlij7//HNt2LBBn332mSTJzc1Nxhin9levXnX8OzQ0VHv27NFHH30kb29v9erVSw0aNHBqkxF2u13+/v5ODwAAAAAA7jaEDbfBzc1Nr7/+ugYPHqxLly4pKChIMTExjvVxcXE6ePCg0zbe3t569NFH9f7772vNmjX65ZdftGPHDkmSp6enkpKSsvUYAAAAAADIKoQNt+mJJ56Qu7u7Jk2apCZNmmjGjBlat26dduzYoS5dusjd3d3RNioqSp999pl27typAwcOaObMmfL29nZMMBkeHq61a9fq2LFj+vvvv111SAAAAAAAWIIJIm+Th4eHXnjhBY0ZM0b79u3TwYMH9cgjjyggIEBvvfWW08iGwMBAjRo1Sv3791dSUpIqVaqk7777Tvny5ZMkjRgxQj179lSJEiWUkJCQ6pIMAAAAAAByEpvhm22OFRcXp4CAAFXpM0Xudm9XlwMAAHKgLWM7u7oEAEAOkvI9NDY29qbzCHIZBQAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsJSHqwvAnVv7347y9/d3dRkAAAAAAEhiZAMAAAAAALAYYQMAAAAAALAUYQMAAAAAALAUYQMAAAAAALAUYQMAAAAAALAUYQMAAAAAALAUYQMAAAAAALAUYQMAAAAAALCUh6sLwJ1rMPgrudu9XV0GANzSlrGdXV0CAAAAsgEjGwAAAAAAgKUIGwAAAAAAgKUIGwAAAAAAgKUIGwAAAAAAgKUIGwAAAAAAgKUIGwAAAAAAgKUIGwAAAAAAgKUIGwAAAAAAgKUIGwAAAAAAgKUIGwAAAAAAgKUIGwAAAAAAgKUIGwAAAAAAgKUIGwAAAAAAgKUIG7JBZGSk2rRp43hujFGPHj2UN29e2Ww2RUdHu6w2AAAAAACsRtiQjtOnT+v5559X0aJFZbfbFRISooiICK1fvz7T+5o4caKioqIcz5cuXaqoqCgtWrRIMTExqlixomw2mxYuXGjdAQAAAAAA4CIeri7gbtWuXTtduXJF06dPV/HixXXy5EmtXLlSZ86cyfS+AgICnJ7v379fBQsWVN26da0qFwAAAACAuwYjG9Jw7tw5rVu3TqNHj1bjxo0VFhamWrVqadCgQWrVqpVeeeUVPfLII472EyZMkM1m09KlSx3LSpYsqU8//VSS82UUkZGR6tOnj44cOSKbzabw8HCFh4dLkh577DHHsrQkJCQoLi7O6QEAAAAAwN2GsCENvr6+8vX11cKFC5WQkJBqfcOGDfXTTz8pKSlJkvTjjz8qf/78WrNmjSTp2LFj2r9/vxo1apRq24kTJ2rEiBEqUqSIYmJitGnTJm3atEmSNG3aNMeytIwcOVIBAQGOR2hoqDUHDAAAAACAhQgb0uDh4aGoqChNnz5dgYGBqlevnl5//XVt375dklS/fn3Fx8dr69atMsZo7dq1evnllx1hw5o1a1S4cGGVLFky1b4DAgLk5+cnd3d3hYSEKCgoSEFBQZKkwMBAx7K0DBo0SLGxsY7H0aNHs+YNAAAAAADgDhA2pKNdu3Y6fvy4vv32W7Vo0UJr1qxR9erVFRUVpcDAQFWpUkVr1qzRjh075OnpqR49emjr1q06f/68fvzxRzVs2NDymux2u/z9/Z0eAAAAAADcbQgbbsLLy0sPPvighgwZop9//lmRkZEaOnSoJKlRo0Zas2aNI1jImzevypUrp59++inLwgYAAAAAAHICwoZMKF++vC5cuCDp/+ZtWLlypWNuhkaNGumrr77S3r1705yv4WZy5crlmAMCAAAAAICcjLAhDWfOnFGTJk00c+ZMbd++XQcPHtScOXM0ZswYtW7dWpLUoEEDxcfHa9GiRU5hw6xZs1SwYEGVLl06U68ZHh6ulStX6sSJE/rnn3+sPiQAAAAAALKNh6sLuBv5+vqqdu3aGj9+vPbv36+rV68qNDRU3bt31+uvvy5JypMnjypVqqSTJ0+qbNmykq4FEMnJybd1CcW7776r/v3765NPPlHhwoV16NAhKw8JAAAAAIBsYzPGGFcXgdsTFxengIAAVekzRe52b1eXAwC3tGVsZ1eXAAAAgDuQ8j00Njb2pjct4DIKAAAAAABgKcIGAAAAAABgKcIGAAAAAABgKcIGAAAAAABgKcIGAAAAAABgKcIGAAAAAABgKcIGAAAAAABgKcIGAAAAAABgKcIGAAAAAABgKcIGAAAAAABgKcIGAAAAAABgKQ9XF4A7t/a/HeXv7+/qMgAAAAAAkMTIBgAAAAAAYDHCBgAAAAAAYCnCBgAAAAAAYCnCBgAAAAAAYCnCBgAAAAAAYCnCBgAAAAAAYCnCBgAAAAAAYCnCBgAAAAAAYCkPVxeAO9dg8Fdyt3u7ugwA/0JbxnZ2dQkAAAC4CzGyAQAAAAAAWIqwAQAAAAAAWIqwAQAAAAAAWCrTYcOBAweyog4AAAAAAHCPyHTYULJkSTVu3FgzZ87U5cuXs6ImAAAAAACQg2U6bPjtt99UuXJl9e/fXyEhIerZs6c2btyYFbUBAAAAAIAcKNNhQ9WqVTVx4kQdP35cn3/+uWJiYvTAAw+oYsWKeu+993T69OmsqBMAAAAAAOQQtz1BpIeHh9q2bas5c+Zo9OjR+vPPP/XKK68oNDRUnTt3VkxMjJV1AgAAAACAHOK2w4bNmzerV69eKliwoN577z298sor2r9/v5YvX67jx4+rdevWVtYJAAAAAAByCI/MbvDee+9p2rRp2rNnjx566CF98cUXeuihh+Tmdi23KFasmKKiohQeHm51rQAAAAAAIAfIdNgwefJkPfPMM4qMjFTBggXTbFOgQAF99tlnd1wcAAAAAADIeTIdNuzbt++WbTw9PdWlS5fbKggAAAAAAORsmQ4btm/fnuZym80mLy8vFS1aVHa7/Y4LAwAAAAAAOVOmw4aqVavKZrOluz5Xrlx68skn9fHHH8vLy+uOisupIiMjde7cOS1cuNDVpQAAAAAAkO0yfTeKBQsWqFSpUpo6daqio6MVHR2tqVOnqkyZMvryyy/12WefadWqVRo8ePBN92Oz2W76GDZs2O0eU4adPn1azz//vGM0RkhIiCIiIrR+/fo72u/EiRMVFRWVqW3Cw8M1YcKEO3pdAAAAAADuBpke2fD2229r4sSJioiIcCyrVKmSihQpoiFDhmjjxo3y8fHRyy+/rHHjxqW7n5iYGMe///e//+nNN9/Unj17HMt8fX0zW1qmtWvXTleuXNH06dNVvHhxnTx5UitXrtSZM2dua39JSUmy2WwKCAiwuFIAAAAAAHKOTI9s2LFjh8LCwlItDwsL044dOyRdu9Ti+jAhLSEhIY5HQECAbDabQkJC5Ofnp9KlS2vp0qVO7RcuXCgfHx/Fx8fr0KFDstlsmj17turWrSsvLy9VrFhRP/74o9M2O3fuVMuWLeXr66vg4GA9/fTT+vvvvyVJ586d07p16zR69Gg1btxYYWFhqlWrlgYNGqRWrVo59nHu3Dn17NlTwcHBjtdZtGiRJCkqKkqBgYH69ttvVb58edntdh05ckSRkZFq06aNYx+NGjXSCy+8oBdeeEEBAQHKnz+/hgwZImOMY/3hw4f10ksvOUZ2AAAAAACQU2U6bChbtqxGjRqlK1euOJZdvXpVo0aNUtmyZSVJx44dU3Bw8G0V5OPjow4dOmjatGlOy6dNm6bHH39cfn5+jmUDBgzQyy+/rK1bt6pOnTp69NFHHaMSzp07pyZNmqhatWravHmzli5dqpMnT6p9+/aSro2c8PX11cKFC5WQkJBmLcnJyWrZsqXWr1+vmTNnateuXRo1apTc3d0dbS5evKjRo0fr008/1e+//64CBQqkua/p06fLw8NDGzdu1MSJE/Xee+/p008/lSTNnz9fRYoU0YgRIxQTE5NuUJOQkKC4uDinBwAAAAAAd5tMX0YxadIktWrVSkWKFFHlypUlXRvtkJSU5PiL/4EDB9SrV6/bLqpbt26qW7euYmJiVLBgQZ06dUqLFy/WihUrnNq98MILateunSRp8uTJWrp0qT777DMNHDhQH374oapVq6Z33nnH0f7zzz9XaGio9u7dq9KlSysqKkrdu3fXlClTVL16dTVs2FAdOnRwHNeKFSu0ceNG7d69W6VLl5YkFS9e3KmGq1ev6qOPPlKVKlVuekyhoaEaP368bDabypQpox07dmj8+PHq3r278ubNK3d3d/n5+SkkJCTdfYwcOVLDhw/P+BsJAAAAAIALZHpkQ926dXXw4EGNGDFClStXVuXKlTVixAgdPHhQ999/vyTp6aef1oABA267qFq1aqlChQqaPn26JGnmzJkKCwtTgwYNnNrVqVPH8W8PDw/VrFlTu3fvliRt27ZNq1evdoxg8PX1dYy82L9/v6RrczYcP35c3377rVq0aKE1a9aoevXqjskdo6OjVaRIEUfQkBZPT09HOHEz999/v9PlEXXq1NG+ffuUlJSUgXfkmkGDBik2NtbxOHr0aIa3BQAAAAAgu2R6ZIMk+fn56bnnnrO6FifdunXTpEmT9Nprr2natGnq2rVrpuYyOH/+vB599FGNHj061bqCBQs6/u3l5aUHH3xQDz74oIYMGaJu3bpp6NChioyMlLe39y1fx9vbO9vmWLDb7bLb7dnyWgAAAAAA3K5Mj2yQro0M6NOnj5o1a6ZmzZqpX79+jtECVnnqqad0+PBhvf/++9q1a5e6dOmSqs2vv/7q+HdiYqK2bNmicuXKSZKqV6+u33//XeHh4SpZsqTTw8fHJ93XLV++vC5cuCBJqly5sv766y/t3bv3jo9nw4YNqWovVaqUY/4HT0/PTI1yAAAAAADgbpXpsGHZsmUqX768Nm7c6LiM4tdff1WFChW0fPlyywrLkyeP2rZtqwEDBqh58+YqUqRIqjaTJk3SggUL9Mcff6h37976559/9Mwzz0iSevfurbNnz6pjx47atGmT9u/fr2XLlqlr165KSkrSmTNn1KRJE82cOVPbt2/XwYMHNWfOHI0ZM0atW7eWJDVs2FANGjRQu3bttHz5ch08eFBLlixJdaeMjDhy5Ij69++vPXv26KuvvtIHH3ygfv36OdaHh4dr7dq1OnbsmOOOGQAAAAAA5ESZvozitdde00svvaRRo0alWv7qq6/qwQcftKy4Z599Vl9++aUjQLjRqFGjNGrUKEVHR6tkyZL69ttvlT9/fklSoUKFtH79er366qtq3ry5EhISFBYWphYtWsjNzU2+vr6qXbu2xo8fr/379+vq1asKDQ1V9+7d9frrrzteY968eXrllVfUsWNHXbhwQSVLlkx17BnRuXNnXbp0SbVq1ZK7u7v69eunHj16ONaPGDFCPXv2VIkSJZSQkOC4LSYAAAAAADmNzWTyW62Xl5d27NihUqVKOS3fu3evKleurMuXL1tW3IwZM/TSSy/p+PHj8vT0dCw/dOiQihUrpq1bt6pq1aqWvV5WadSokapWraoJEyZYut+4uDgFBASoSp8pcrffen4JALDalrGdXV0CAAAAslHK99DY2Fj5+/un2y7Tl1EEBQUpOjo61fLo6GgVKFAgs7tL08WLF7V//36NGjVKPXv2dAoaAAAAAADA3S3Tl1F0795dPXr00IEDB1S3bl1J0vr16zV69Gj179/fkqLGjBmjt99+Ww0aNNCgQYMs2ScAAAAAAMgemb6MwhijCRMm6N1339Xx48clXZsfYcCAAerbt2+23QYSXEYBwPW4jAIAAODfJaOXUWR6ZIPNZtNLL72kl156SfHx8ZIkPz+/268UAAAAAADcUzIdNlyPkAEAAAAAANwoQ2FDtWrVMnx5xG+//XZHBQEAAAAAgJwtQ2FDmzZtsrgMAAAAAABwr8hQ2DB06NCsrgMAAAAAANwjbnvOhi1btmj37t2SpAoVKqhatWqWFQUAAAAAAHKuTIcNp06dUocOHbRmzRoFBgZKks6dO6fGjRtr9uzZCgoKsrpGAAAAAACQg7hldoM+ffooPj5ev//+u86ePauzZ89q586diouLU9++fbOiRgAAAAAAkIPYjDEmMxsEBARoxYoVuu+++5yWb9y4Uc2bN9e5c+esrA83ERcXp4CAAMXGxsrf39/V5QAAAAAA7nEZ/R6a6ZENycnJypUrV6rluXLlUnJycmZ3BwAAAAAA7jGZDhuaNGmifv366fjx445lx44d00svvaSmTZtaWhwAAAAAAMh5Mh02fPjhh4qLi1N4eLhKlCihEiVKqFixYoqLi9MHH3yQFTUCAAAAAIAcJNN3owgNDdVvv/2mFStW6I8//pAklStXTs2aNbO8OAAAAAAAkPNkeoJI3D2YIBIAAAAAkJ0y+j000yMbJGnlypVauXKlTp06lWpSyM8///x2dgkAAAAAAO4RmQ4bhg8frhEjRqhmzZoqWLCgbDZbVtQFAAAAAAByqEyHDVOmTFFUVJSefvrprKgHAAAAAADkcJkOG65cuaK6detmRS24TQ0GfyV3u7erywBwD9kytrOrSwAAAEAOlulbX3br1k1ffvllVtQCAAAAAADuAZke2XD58mVNnTpVK1asUOXKlZUrVy6n9e+9955lxQEAAAAAgJwn02HD9u3bVbVqVUnSzp07ndYxWSQAAAAAAMh02LB69eqsqAMAAAAAANwjMj1nAwAAAAAAwM1kemTDhQsXNGrUKK1cuVKnTp1ScnKy0/oDBw5YVhwAAAAAAMh5Mh02dOvWTT/++KOefvppFSxYkHkaAAAAAACAk0yHDUuWLNH333+vevXqZUU9AAAAAAAgh8v0nA158uRR3rx5s6IWAAAAAABwD8h02PDWW2/pzTff1MWLF7OiHgAAAAAAkMNl6DKKatWqOc3N8Oeffyo4OFjh4eHKlSuXU9vffvvN2goBAAAAAECOkqGwoU2bNllcBgAAAAAAuFdkKGwYOnRoVtcBAAAAAADuEZmes2HTpk3asGFDquUbNmzQ5s2bLSkqJ4iMjLyjER/Dhg1T1apVLdsfAAAAAAB3i0yHDb1799bRo0dTLT927Jh69+5tSVF3Kr0v7mvWrJHNZtO5c+eyvSYAAAAAAP4tMh027Nq1S9WrV0+1vFq1atq1a5clRQEAAAAAgJwr02GD3W7XyZMnUy2PiYmRh0eGpoC4K5w5c0YdO3ZU4cKFlTt3blWqVElfffWVU5u5c+eqUqVK8vb2Vr58+dSsWTNduHAhzf1t2rRJQUFBGj16tCTp3Llz6tatm4KCguTv768mTZpo27ZtWX5cAAAAAAC4WqbDhubNm2vQoEGKjY11LDt37pxef/11Pfjgg5YWl5UuX76sGjVq6Pvvv9fOnTvVo0cPPf3009q4caOka+FJx44d9cwzz2j37t1as2aN2rZtK2NMqn2tWrVKDz74oN5++229+uqrkqQnnnhCp06d0pIlS7RlyxZVr15dTZs21dmzZ2+75oSEBMXFxTk9AAAAAAC422R6KMK4cePUoEEDhYWFqVq1apKk6OhoBQcHa8aMGZYXeLsWLVokX19fp2VJSUmOfxcuXFivvPKK43mfPn20bNkyff3116pVq5ZiYmKUmJiotm3bKiwsTJJUqVKlVK+zYMECde7cWZ9++qmefPJJSdJPP/2kjRs36tSpU7Lb7ZKuvW8LFy7U3Llz1aNHj9s6ppEjR2r48OG3tS0AAAAAANkl02FD4cKFtX37ds2aNUvbtm2Tt7e3unbtqo4dOypXrlxZUeNtady4sSZPnuy0bMOGDXrqqackXQse3nnnHX399dc6duyYrly5ooSEBOXOnVuSVKVKFTVt2lSVKlVSRESEmjdvrscff1x58uRx2t+iRYs0d+5cpwkpt23bpvPnzytfvnxOr3/p0iXt37//to9p0KBB6t+/v+N5XFycQkNDb3t/AAAAAABkhduaZMHHx+e2/zqfXXx8fFSyZEmnZX/99Zfj32PHjtXEiRM1YcIEVapUST4+PnrxxRd15coVSZK7u7uWL1+un3/+WT/88IM++OADvfHGG9qwYYOKFSsmSSpRooTy5cunzz//XA8//LAjbDl//rwKFiyoNWvWpKorMDDwto/Jbrc7RkoAAAAAAHC3yvScDZI0Y8YMPfDAAypUqJAOHz4sSRo/fry++eYbS4vLSuvXr1fr1q311FNPqUqVKipevLj27t3r1MZms6levXoaPny4tm7dKk9PTy1YsMCxPn/+/Fq1apX+/PNPtW/fXlevXpUkVa9eXSdOnJCHh4dKlizp9MifP3+2HicAAAAAANkt02HD5MmT1b9/f7Vs2VL//POPYx6EPHnyaMKECVbXl2VKlSrlGLmwe/du9ezZ0+kuGxs2bNA777yjzZs368iRI5o/f75Onz6tcuXKOe2nQIECWrVqlf744w917NhRiYmJatasmerUqaM2bdrohx9+0KFDh/Tzzz/rjTfe0ObNm7P7UAEAAAAAyFaZDhs++OADffLJJ3rjjTecbnVZs2ZN7dixw9ListLgwYNVvXp1RUREqFGjRgoJCXGad8Hf319r167VQw89pNKlS2vw4MF699131bJly1T7CgkJ0apVq7Rjxw516tRJycnJWrx4sRo0aKCuXbuqdOnS6tChgw4fPqzg4OBsPEoAAAAAALKfzaR1L8eb8Pb21h9//KGwsDD5+flp27ZtKl68uPbt26fKlSvr0qVLWVUrbhAXF6eAgABV6TNF7nZvV5cD4B6yZWxnV5cAAACAu1DK99DY2Fj5+/un2y7TIxuKFSum6OjoVMuXLl2a6hIDAAAAAADw75Phu1GMGDFCr7zyivr376/evXvr8uXLMsZo48aN+uqrrzRy5Eh9+umnWVkrAAAAAADIATIcNgwfPlzPPfecunXrJm9vbw0ePFgXL17Uf/7zHxUqVEgTJ05Uhw4dsrJWAAAAAACQA2Q4bLh+aodOnTqpU6dOunjxos6fP68CBQpkSXEAAAAAACDnyXDYIEk2m83pee7cuZU7d25LCwIAAAAAADlbpsKG0qVLpwocbnT27Nk7KggAAAAAAORsmQobhg8froCAgKyqBQAAAAAA3AMyFTZ06NCB+RkAAAAAAMBNuWW04a0unwAAAAAAAJAyETZcfzcKAAAAAACA9GT4Mork5OSsrAMAAAAAANwjMjVnA+5Oa//bUf7+/q4uAwAAAAAASZm4jAIAAAAAACAjCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClPFxdAO5cg8Ffyd3u7eoyAFhsy9jOri4BAAAAuC2MbAAAAAAAAJYibAAAAAAAAJYibAAAAAAAAJYibAAAAAAAAJYibAAAAAAAAJYibAAAAAAAAJYibAAAAAAAAJYibAAAAAAAAJYibAAAAAAAAJYibAAAAAAAAJYibAAAAAAAAJYibAAAAAAAAJYibMgmjRo10osvvujqMgAAAAAAyHKEDf/f6dOn9fzzz6to0aKy2+0KCQlRRESE1q9f7+rSAAAAAADIUTxcXcDdol27drpy5YqmT5+u4sWL6+TJk1q5cqXOnDnj6tIAAAAAAMhRGNkg6dy5c1q3bp1Gjx6txo0bKywsTLVq1dKgQYPUqlUrR5uePXsqODhYXl5eqlixohYtWiRJOnPmjDp27KjChQsrd+7cqlSpkr766qubvuaMGTNUs2ZN+fn5KSQkRP/5z3906tSpLD9WAAAAAACyGmGDJF9fX/n6+mrhwoVKSEhItT45OVktW7bU+vXrNXPmTO3atUujRo2Su7u7JOny5cuqUaOGvv/+e+3cuVM9evTQ008/rY0bN6b7mlevXtVbb72lbdu2aeHChTp06JAiIyNvWmdCQoLi4uKcHgAAAAAA3G1sxhjj6iLuBvPmzVP37t116dIlVa9eXQ0bNlSHDh1UuXJl/fDDD2rZsqV2796t0qVLZ2h/jzzyiMqWLatx48ZJujZBZNWqVTVhwoQ022/evFn33Xef4uPj5evrm2abYcOGafjw4amWV+kzRe5274wdKIAcY8vYzq4uAQAAAHASFxengIAAxcbGyt/fP912jGz4/9q1a6fjx4/r22+/VYsWLbRmzRpVr15dUVFRio6OVpEiRdINGpKSkvTWW2+pUqVKyps3r3x9fbVs2TIdOXIk3dfbsmWLHn30URUtWlR+fn5q2LChJN10m0GDBik2NtbxOHr06J0dNAAAAAAAWYCw4TpeXl568MEHNWTIEP3888+KjIzU0KFD5e1981EDY8eO1cSJE/Xqq69q9erVio6OVkREhK5cuZJm+wsXLigiIkL+/v6aNWuWNm3apAULFkhSuttIkt1ul7+/v9MDAAAAAIC7DWHDTZQvX14XLlxQ5cqV9ddff2nv3r1ptlu/fr1at26tp556SlWqVFHx4sXTbStJf/zxh86cOaNRo0apfv36Klu2LJNDAgAAAADuGYQNunY3iSZNmmjmzJnavn27Dh48qDlz5mjMmDFq3bq1GjZsqAYNGqhdu3Zavny5Dh48qCVLlmjp0qWSpFKlSmn58uX6+eeftXv3bvXs2VMnT55M9/WKFi0qT09PffDBBzpw4IC+/fZbvfXWW9l1uAAAAAAAZCnCBl27G0Xt2rU1fvx4NWjQQBUrVtSQIUPUvXt3ffjhh5KuTSB53333qWPHjipfvrwGDhyopKQkSdLgwYNVvXp1RUREqFGjRgoJCVGbNm3Sfb2goCBFRUVpzpw5Kl++vEaNGuWYSBIAAAAAgJyOu1HkYCmzgHI3CuDexN0oAAAAcLfhbhQAAAAAAMAlCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClPFxdAO7c2v92lL+/v6vLAAAAAABAEiMbAAAAAACAxQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApQgbAAAAAACApTxcXQDuXIPBX8nd7u3qMgCkYcvYzq4uAQAAAMh2jGwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImwAAAAAAACWImywWGRkpGw2W6rHn3/+6dTu9OnT8vT01IULF3T16lX5+PjoyJEjLqoaAAAAAADreLi6gHtRixYtNG3aNKdlQUFBTs9/+eUXValSRT4+PtqwYYPy5s2rokWLZmeZAAAAAABkCcKGLGC32xUSEnLTNj///LPq1asnSfrpp58c/wYAAAAAIKcjbMhGR44cUeXKlSVJFy9elLu7u6KionTp0iXZbDYFBgbqP//5jz766KM0t09ISFBCQoLjeVxcXLbUDQAAAABAZhA2ZIFFixbJ19fX8bxly5aaM2eOChUqpOjoaMXFxalmzZrasGGDfHx8VLVqVX3//fcqWrSo03Y3GjlypIYPH54dhwAAAAAAwG0jbMgCjRs31uTJkx3PfXx8JEkeHh4KDw/X119/rfvuu0+VK1fW+vXrFRwcrAYNGtxyv4MGDVL//v0dz+Pi4hQaGmr9AQAAAAAAcAcIG7KAj4+PSpYsmWp5hQoVdPjwYV29elXJycny9fVVYmKiEhMT5evrq7CwMP3+++/p7tdut8tut2dl6QAAAAAA3DFufZmNFi9erOjoaIWEhGjmzJmKjo5WxYoVNWHCBEVHR2vx4sWuLhEAAAAAgDvGyIZsFBYWphMnTujkyZNq3bq1bDabfv/9d7Vr104FCxZ0dXkAAAAAAFiCkQ3ZbM2aNbrvvvvk5eWljRs3qkiRIgQNAAAAAIB7is0YY1xdBG5PXFycAgICVKXPFLnbvV1dDoA0bBnb2dUlAAAAAJZJ+R4aGxsrf3//dNsxsgEAAAAAAFiKsAEAAAAAAFiKsAEAAAAAAFiKsAEAAAAAAFiKsAEAAAAAAFiKsAEAAAAAAFiKsAEAAAAAAFiKsAEAAAAAAFiKsAEAAAAAAFiKsAEAAAAAAFiKsAEAAAAAAFiKsAEAAAAAAFjKw9UF4M6t/W9H+fv7u7oMAAAAAAAkMbIBAAAAAABYjLABAAAAAABYirABAAAAAABYirABAAAAAABYirABAAAAAABYirABAAAAAABYirABAAAAAABYirABAAAAAABYysPVBeDONRj8ldzt3q4uA7inbBnb2dUlAAAAADkWIxsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsAAAAAAIClCBsyKTIyUm3atHF1GQAAAAAA3LXu6bAhMjJSNptNNptNnp6eKlmypEaMGKHExMRbbnvo0CHZbDZFR0dnfaEAAAAAANxDPFxdQFZr0aKFpk2bpoSEBC1evFi9e/dWrly5NGjQIFeXBgAAAADAPemeHtkgSXa7XSEhIQoLC9Pzzz+vZs2a6euvv5a/v7/mzp3r1HbhwoXy8fFRfHy8ihUrJkmqVq2abDabGjVq5NR23LhxKliwoPLly6fevXvr6tWrjnX//POPOnfurDx58ih37txq2bKl9u3b51gfFRWlwMBALVu2TOXKlZOvr69atGihmJiYmx5LQkKC4uLinB4AAAAAANxt7vmw4Ube3t5yc3NThw4dNG3aNKd106ZN0+OPPy4/Pz9t3LhRkrRixQrFxMRo/vz5jnarV6/W/v37tXr1ak2fPl1RUVGKiopyrI+MjNTmzZv17bff6pdffpExRg899JBTIHHx4kWNGzdOM2bM0Nq1a3XkyBG98sorN6195MiRCggIcDxCQ0MteEcAAAAAALDWvyZsMMZoxYoVWrZsmZo0aaJu3bpp2bJljtEEp06d0uLFi/XMM89IkoKCgiRJ+fLlU0hIiPLmzevYV548efThhx+qbNmyeuSRR/Twww9r5cqVkqR9+/bp22+/1aeffqr69eurSpUqmjVrlo4dO6aFCxc69nH16lVNmTJFNWvWVPXq1fXCCy849pGeQYMGKTY21vE4evSolW8RAAAAAACWuOfnbFi0aJF8fX119epVJScn6z//+Y+GDRsmHx8fVahQQdOnT9drr72mmTNnKiwsTA0aNLjlPitUqCB3d3fH84IFC2rHjh2SpN27d8vDw0O1a9d2rM+XL5/KlCmj3bt3O5blzp1bJUqUcNrHqVOnbvq6drtddrs9w8cOAAAAAIAr3PMjGxo3bqzo6Gjt27dPly5d0vTp0+Xj4yNJ6tatm+Pyh2nTpqlr166y2Wy33GeuXLmcnttsNiUnJ2eqrrT2YYzJ1D4AAAAAALgb3fNhg4+Pj0qWLKmiRYvKw8N5IMdTTz2lw4cP6/3339euXbvUpUsXxzpPT09JUlJSUqZer1y5ckpMTNSGDRscy86cOaM9e/aofPnyd3AkAAAAAADkDPd82HAzefLkUdu2bTVgwAA1b95cRYoUcawrUKCAvL29tXTpUp08eVKxsbEZ2mepUqXUunVrde/eXT/99JO2bdump556SoULF1br1q2z6lAAAAAAALhr/KvDBkl69tlndeXKFcfEkCk8PDz0/vvv6+OPP1ahQoUyFRRMmzZNNWrU0COPPKI6derIGKPFixenunQCAAAAAIB7kc38yycKmDFjhl566SUdP37ccelEThEXF6eAgABV6TNF7nZvV5cD3FO2jO3s6hIAAACAu07K99DY2Fj5+/un2+6evxtFei5evKiYmBiNGjVKPXv2zHFBAwAAAAAAd6t/7WUUY8aMUdmyZRUSEqJBgwa5uhwAAAAAAO4Z/9qwYdiwYbp69apWrlwpX19fV5cDAAAAAMA9418bNgAAAAAAgKxB2AAAAAAAACxF2AAAAAAAACxF2AAAAAAAACxF2AAAAAAAACxF2AAAAAAAACxF2AAAAAAAACxF2AAAAAAAACzl4eoCcOfW/rej/P39XV0GAAAAAACSGNkAAAAAAAAsRtgAAAAAAAAsRdgAAAAAAAAsRdgAAAAAAAAsRdgAAAAAAAAsRdgAAAAAAAAsRdgAAAAAAAAsRdgAAAAAAAAs5eHqAnDnGgz+Su52b1eXAdwVtozt7OoSAAAAgH89RjYAAAAAAABLETYAAAAAAABLETYAAAAAAABLETYAAAAAAABLETYAAAAAAABLETYAAAAAAABLETYAAAAAAABLETYAAAAAAABLETYAAAAAAABLETYAAAAAAABLETYAAAAAAABLETYAAAAAAABLETYAAAAAAABLETYAAAAAAABLETa4SGRkpGw2m2w2m3LlyqVixYpp4MCBunz5sqtLAwAAAADgjni4uoB/sxYtWmjatGm6evWqtmzZoi5dushms2n06NGuLg0AAAAAgNvGyAYXstvtCgkJUWhoqNq0aaNmzZpp+fLlri4LAAAAAIA7wsiGu8TOnTv1888/KywsLN02CQkJSkhIcDyPi4vLjtIAAAAAAMgUwgYXWrRokXx9fZWYmKiEhAS5ubnpww8/TLf9yJEjNXz48GysEAAAAACAzOMyChdq3LixoqOjtWHDBnXp0kVdu3ZVu3bt0m0/aNAgxcbGOh5Hjx7NxmoBAAAAAMgYRja4kI+Pj0qWLClJ+vzzz1WlShV99tlnevbZZ9Nsb7fbZbfbs7NEAAAAAAAyjZENdwk3Nze9/vrrGjx4sC5duuTqcgAAAAAAuG2EDXeRJ554Qu7u7po0aZKrSwEAAAAA4LYRNtxFPDw89MILL2jMmDG6cOGCq8sBAAAAAOC22IwxxtVF4PbExcUpICBAVfpMkbvd29XlAHeFLWM7u7oEAAAA4J6V8j00NjZW/v7+6bZjZAMAAAAAALAUYQMAAAAAALAUYQMAAAAAALAUYQMAAAAAALAUYQMAAAAAALAUYQMAAAAAALAUYQMAAAAAALAUYQMAAAAAALAUYQMAAAAAALAUYQMAAAAAALAUYQMAAAAAALCUh6sLwJ1b+9+O8vf3d3UZAAAAAABIYmQDAAAAAACwGGEDAAAAAACwFGEDAAAAAACwFHM25GDGGElSXFyciysBAAAAAPwbpHz/TPk+mh7ChhzszJkzkqTQ0FAXVwIAAAAA+DeJj49XQEBAuusJG3KwvHnzSpKOHDly05MM3K3i4uIUGhqqo0ePckcV5Ej0YeR09GHkdPRh3AtyWj82xig+Pl6FChW6aTvChhzMze3alBsBAQE5olMC6fH396cPI0ejDyOnow8jp6MP416Qk/pxRv7YzQSRAAAAAADAUoQNAAAAAADAUoQNOZjdbtfQoUNlt9tdXQpwW+jDyOnow8jp6MPI6ejDuBfcq/3YZm51vwoAAAAAAIBMYGQDAAAAAACwFGEDAAAAAACwFGEDAAAAAACwFGEDAAAAAACwFGFDDjVp0iSFh4fLy8tLtWvX1saNG11dEv6FRo4cqfvuu09+fn4qUKCA2rRpoz179ji1uXz5snr37q18+fLJ19dX7dq108mTJ53aHDlyRA8//LBy586tAgUKaMCAAUpMTHRqs2bNGlWvXl12u10lS5ZUVFRUVh8e/oVGjRolm82mF1980bGMPoyc4NixY3rqqaeUL18+eXt7q1KlStq8ebNjvTFGb775pgoWLChvb281a9ZM+/btc9rH2bNn1alTJ/n7+yswMFDPPvuszp8/79Rm+/btql+/vry8vBQaGqoxY8Zky/Hh3paUlKQhQ4aoWLFi8vb2VokSJfTWW2/p+nns6cO4m6xdu1aPPvqoChUqJJvNpoULFzqtz87+OmfOHJUtW1ZeXl6qVKmSFi9ebPnx3jaDHGf27NnG09PTfP755+b333833bt3N4GBgebkyZOuLg3/MhEREWbatGlm586dJjo62jz00EOmaNGi5vz58442zz33nAkNDTUrV640mzdvNvfff7+pW7euY31iYqKpWLGiadasmdm6datZvHixyZ8/vxk0aJCjzYEDB0zu3LlN//79za5du8wHH3xg3N3dzdKlS7P1eHFv27hxowkPDzeVK1c2/fr1cyynD+Nud/bsWRMWFmYiIyPNhg0bzIEDB8yyZcvMn3/+6WgzatQoExAQYBYuXGi2bdtmWrVqZYoVK2YuXbrkaNOiRQtTpUoV8+uvv5p169aZkiVLmo4dOzrWx8bGmuDgYNOpUyezc+dO89VXXxlvb2/z8ccfZ+vx4t7z9ttvm3z58plFixaZgwcPmjlz5hhfX18zceJERxv6MO4mixcvNm+88YaZP3++kWQWLFjgtD67+uv69euNu7u7GTNmjNm1a5cZPHiwyZUrl9mxY0eWvwcZQdiQA9WqVcv07t3b8TwpKckUKlTIjBw50oVVAcacOnXKSDI//vijMcaYc+fOmVy5cpk5c+Y42uzevdtIMr/88osx5toPazc3N3PixAlHm8mTJxt/f3+TkJBgjDFm4MCBpkKFCk6v9eSTT5qIiIisPiT8S8THx5tSpUqZ5cuXm4YNGzrCBvowcoJXX33VPPDAA+muT05ONiEhIWbs2LGOZefOnTN2u9189dVXxhhjdu3aZSSZTZs2OdosWbLE2Gw2c+zYMWOMMR999JHJkyePo1+nvHaZMmWsPiT8yzz88MPmmWeecVrWtm1b06lTJ2MMfRh3txvDhuzsr+3btzcPP/ywUz21a9c2PXv2tPQYbxeXUeQwV65c0ZYtW9SsWTPHMjc3NzVr1ky//PKLCysDpNjYWElS3rx5JUlbtmzR1atXnfpr2bJlVbRoUUd//eWXX1SpUiUFBwc72kRERCguLk6///67o831+0hpQ5+HVXr37q2HH344VT+jDyMn+Pbbb1WzZk098cQTKlCggKpVq6ZPPvnEsf7gwYM6ceKEUx8MCAhQ7dq1nfpxYGCgatas6WjTrFkzubm5acOGDY42DRo0kKenp6NNRESE9uzZo3/++SerDxP3sLp162rlypXau3evJGnbtm366aef1LJlS0n0YeQs2dlf7/bfLwgbcpi///5bSUlJTr/USlJwcLBOnDjhoqoAKTk5WS+++KLq1aunihUrSpJOnDghT09PBQYGOrW9vr+eOHEizf6csu5mbeLi4nTp0qWsOBz8i8yePVu//fabRo4cmWodfRg5wYEDBzR58mSVKlVKy5Yt0/PPP6++fftq+vTpkv6vH97sd4cTJ06oQIECTus9PDyUN2/eTPV14Ha89tpr6tChg8qWLatcuXKpWrVqevHFF9WpUydJ9GHkLNnZX9Nrc7f0Zw9XFwDg3tC7d2/t3LlTP/30k6tLATLs6NGj6tevn5YvXy4vLy9XlwPcluTkZNWsWVPvvPOOJKlatWrauXOnpkyZoi5duri4OuDWvv76a82aNUtffvmlKlSooOjoaL344osqVKgQfRjIwRjZkMPkz59f7u7uqWZCP3nypEJCQlxUFf7tXnjhBS1atEirV69WkSJFHMtDQkJ05coVnTt3zqn99f01JCQkzf6csu5mbfz9/eXt7W314eBfZMuWLTp16pSqV68uDw8PeXh46Mcff9T7778vDw8PBQcH04dx1ytYsKDKly/vtKxcuXI6cuSIpP/rhzf73SEkJESnTp1yWp+YmKizZ89mqq8Dt2PAgAGO0Q2VKlXS008/rZdeeskx4ow+jJwkO/trem3ulv5M2JDDeHp6qkaNGlq5cqVjWXJyslauXKk6deq4sDL8Gxlj9MILL2jBggVatWqVihUr5rS+Ro0aypUrl1N/3bNnj44cOeLor3Xq1NGOHTucfuAuX75c/v7+jl+e69Sp47SPlDb0edyppk2baseOHYqOjnY8atasqU6dOjn+TR/G3a5evXqpbju8d+9ehYWFSZKKFSumkJAQpz4YFxenDRs2OPXjc+fOacuWLY42q1atUnJysmrXru1os3btWl29etXRZvny5SpTpozy5MmTZceHe9/Fixfl5ub8tcTd3V3JycmS6MPIWbKzv971v1+4eoZKZN7s2bON3W43UVFRZteuXaZHjx4mMDDQaSZ0IDs8//zzJiAgwKxZs8bExMQ4HhcvXnS0ee6550zRokXNqlWrzObNm02dOnVMnTp1HOtTbhvYvHlzEx0dbZYuXWqCgoLSvG3ggAEDzO7du82kSZO4bSCyzPV3ozCGPoy738aNG42Hh4d5++23zb59+8ysWbNM7ty5zcyZMx1tRo0aZQIDA80333xjtm/fblq3bp3mbdiqVatmNmzYYH766SdTqlQpp9uwnTt3zgQHB5unn37a7Ny508yePdvkzp2b2wbijnXp0sUULlzYcevL+fPnm/z585uBAwc62tCHcTeJj483W7duNVu3bjWSzHvvvWe2bt1qDh8+bIzJvv66fv164+HhYcaNG2d2795thg4dyq0vcec++OADU7RoUePp6Wlq1aplfv31V1eXhH8hSWk+pk2b5mhz6dIl06tXL5MnTx6TO3du89hjj5mYmBin/Rw6dMi0bNnSeHt7m/z585uXX37ZXL161anN6tWrTdWqVY2np6cpXry402sAVroxbKAPIyf47rvvTMWKFY3dbjdly5Y1U6dOdVqfnJxshgwZYoKDg43dbjdNmzY1e/bscWpz5swZ07FjR+Pr62v8/f1N165dTXx8vFObbdu2mQceeMDY7XZTuHBhM2rUqCw/Ntz74uLiTL9+/UzRokWNl5eXKV68uHnjjTecbvlHH8bdZPXq1Wn+DtylSxdjTPb216+//tqULl3aeHp6mgoVKpjvv/8+y447s2zGGOOaMRUAAAAAAOBexJwNAAAAAADAUoQNAAAAAADAUoQNAAAAAADAUoQNAAAAAADAUoQNAAAAAADAUoQNAAAAAADAUoQNAAAAAADAUoQNAAAAAADAUoQNAAD8S9lsNi1cuNDVZdyWQ4cOyWazKTo62tWlpOnEiRN68MEH5ePjo8DAQFeXAwBAtiNsAADgHnTixAn16dNHxYsXl91uV2hoqB599FGtXLnS1aVZIjQ0VDExMapYseId7cdmszkeAQEBqlevnlatWnXH9Y0fP14xMTGKjo7W3r1773h/AADkNIQNAADcYw4dOqQaNWpo1apVGjt2rHbs2KGlS5eqcePG6t27t6vLs4S7u7tCQkLk4eFxx/uaNm2aYmJitH79euXPn1+PPPKIDhw4kGbbq1evZmif+/fvV40aNVSqVCkVKFDgtuq6cuXKbW0HAMDdgLABAIB7TK9evWSz2bRx40a1a9dOpUuXVoUKFdS/f3/9+uuvTm3//vtvPfbYY8qdO7dKlSqlb7/91rEuKSlJzz77rIoVKyZvb2+VKVNGEydOdNo+MjJSbdq00bhx41SwYEHly5dPvXv3dvpSHhMTo4cfflje3t4qVqyYvvzyS4WHh2vChAmONufOnVO3bt0UFBQkf39/NWnSRNu2bUv3GG+8jGLNmjWy2WxauXKlatasqdy5c6tu3bras2fPLd+vwMBAhYSEqGLFipo8ebIuXbqk5cuXS7o28mHy5Mlq1aqVfHx89Pbbb0uSvvnmG1WvXl1eXl4qXry4hg8frsTERElSeHi45s2bpy+++EI2m02RkZEZOsZhw4apatWq+vTTT1WsWDF5eXllarsZM2YoPDxcAQEB6tChg+Lj4x1tkpOTNWbMGJUsWVJ2u11FixZ1HIskHT16VO3bt1dgYKDy5s2r1q1b69ChQ7d87wAASA9hAwAA95CzZ89q6dKl6t27t3x8fFKtv3H+gOHDh6t9+/bavn27HnroIXXq1Elnz56VdO0LapEiRTRnzhzt2rVLb775pl5//XV9/fXXTvtYvXq19u/fr9WrV2v69OmKiopSVFSUY33nzp11/PhxrVmzRvPmzdPUqVN16tQpp3088cQTOnXqlJYsWaItW7aoevXqatq0qaOWjHrjjTf07rvvavPmzfLw8NAzzzyTqe29vb0lOY8qGDZsmB577DHt2LFDzzzzjNatW6fOnTurX79+2rVrlz7++GNFRUU5vrxv2rRJLVq0UPv27RUTE+MIaDJyjH/++afmzZun+fPnO4KUjGy3f/9+LVy4UIsWLdKiRYv0448/atSoUY71gwYN0qhRozRkyBDt2rVLX375pYKDgyVdG60REREhPz8/rVu3TuvXr5evr69atGjB6AoAwO0zAADgnrFhwwYjycyfP/+WbSWZwYMHO56fP3/eSDJLlixJd5vevXubdu3aOZ536dLFhIWFmcTERMeyJ554wjz55JPGGGN2795tJJlNmzY51u/bt89IMuPHjzfGGLNu3Trj7+9vLl++7PRaJUqUMB9//HGadRw8eNBIMlu3bjXGGLN69WojyaxYscLR5vvvvzeSzKVLl276HixYsMAYY8yFCxdMr169jLu7u9m2bZtj/Ysvvui0TdOmTc0777zjtGzGjBmmYMGCjuetW7c2Xbp0cTzPyDEOHTrU5MqVy5w6dSrT2+XOndvExcU51g8YMMDUrl3bGGNMXFycsdvt5pNPPknzPZgxY4YpU6aMSU5OdixLSEgw3t7eZtmyZWluAwDArdz5hY4AAOCuYYzJVPvKlSs7/u3j4yN/f3+nUQeTJk3S559/riNHjujSpUu6cuWKqlat6rSPChUqyN3d3fG8YMGC2rFjhyRpz5498vDwUPXq1R3rS5YsqTx58jieb9u2TefPn1e+fPmc9nvp0iXt37//to+nYMGCkqRTp06paNGi6W7TsWNHubu769KlSwoKCtJnn33mtJ+aNWs6td+2bZvWr1/vdBlCUlKSLl++rIsXLyp37typXiOjxxgWFqagoKBMbxceHi4/Pz+nY085j7t371ZCQoKaNm2a5vFv27ZNf/75p9P2knT58uVMv/8AAKQgbAAA4B5SqlQp2Ww2/fHHHxlqnytXLqfnNptNycnJkqTZs2frlVde0bvvvqs6derIz89PY8eO1YYNGzK8j4w4f/68ChYsqDVr1qRal9nbRl5fi81mk6Rb1jJ+/Hg1a9ZMAQEBTl/0U9x4Ocr58+c1fPhwtW3bNlXblHkWbpTRY0zrtTKy3c3OQcqlIek5f/68atSooVmzZqVal9b7AQBARhA2AABwD8mbN68iIiI0adIk9e3bN9WX13PnzmX4C/z69etVt25d9erVy7Ess3/pLlOmjBITE7V161bVqFFD0rV5Cf755x9Hm+rVq+vEiRPy8PBQeHh4pvZvhZCQEJUsWTLD7atXr649e/ZkepvbOUYr3ptSpUrJ29tbK1euVLdu3dJ8jf/9738qUKCA/P39b+s1AAC4ERNEAgBwj5k0aZKSkpJUq1YtzZs3T/v27dPu3bv1/vvvq06dOhneT6lSpbR582YtW7ZMe/fu1ZAhQ7Rp06ZM1VK2bFk1a9ZMPXr00MaNG7V161b16NFD3t7ejpEHzZo1U506ddSmTRv98MMPOnTokH7++We98cYb2rx5c6ZeLzu8+eab+uKLLzR8+HD9/vvv2r17t2bPnq3Bgwenu83tHqMV742Xl5deffVVDRw4UF988YX279+vX3/9VZ999pkkqVOnTsqfP79at26tdevW6eDBg1qzZo369u2rv/76K3NvDgAA/x9hAwAA95jixYvrt99+U+PGjfXyyy+rYsWKevDBB7Vy5UpNnjw5w/vp2bOn2rZtqyeffFK1a9fWmTNnnEY5ZNQXX3yh4OBgNWjQQI899pi6d+8uPz8/xyUHNptNixcvVoMGDdS1a1eVLl1aHTp00OHDhx13TLibREREaNGiRfrhhx9033336f7779f48eMVFhaW7ja3e4xWvTdDhgzRyy+/rDfffFPlypXTk08+6ZjTIXfu3Fq7dq2KFi2qtm3bqly5cnr22Wd1+fJlRjoAAG6bzWR2JikAAIA78Ndffyk0NFQrVqxId9JCAACQsxE2AACALLVq1SqdP39elSpVUkxMjAYOHKhjx45p7969qSY2BAAA9wYmiAQAAFnq6tWrev3113XgwAH5+fmpbt26mjVrFkEDAAD3MEY2AAAAAAAASzFBJAAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsBRhAwAAAAAAsNT/AyrYZKk1PdrYAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + } + ] +} \ No newline at end of file