|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": { |
| 7 | + "vscode": { |
| 8 | + "languageId": "plaintext" |
| 9 | + } |
| 10 | + }, |
| 11 | + "outputs": [], |
| 12 | + "source": [ |
| 13 | + "import pandas as pd\n", |
| 14 | + "import numpy as np\n", |
| 15 | + "import matplotlib.pyplot as plt\n", |
| 16 | + "import seaborn as sns" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "code", |
| 21 | + "execution_count": null, |
| 22 | + "metadata": { |
| 23 | + "vscode": { |
| 24 | + "languageId": "plaintext" |
| 25 | + } |
| 26 | + }, |
| 27 | + "outputs": [], |
| 28 | + "source": [ |
| 29 | + "house=pd.read_csv(\"https://github.com/YBIFoundation/Dataset/raw/main/Boston.csv\")\n", |
| 30 | + "house" |
| 31 | + ] |
| 32 | + }, |
| 33 | + { |
| 34 | + "cell_type": "code", |
| 35 | + "execution_count": null, |
| 36 | + "metadata": { |
| 37 | + "vscode": { |
| 38 | + "languageId": "plaintext" |
| 39 | + } |
| 40 | + }, |
| 41 | + "outputs": [], |
| 42 | + "source": [ |
| 43 | + "house.head()" |
| 44 | + ] |
| 45 | + }, |
| 46 | + { |
| 47 | + "cell_type": "code", |
| 48 | + "execution_count": null, |
| 49 | + "metadata": { |
| 50 | + "vscode": { |
| 51 | + "languageId": "plaintext" |
| 52 | + } |
| 53 | + }, |
| 54 | + "outputs": [], |
| 55 | + "source": [ |
| 56 | + "house.info()" |
| 57 | + ] |
| 58 | + }, |
| 59 | + { |
| 60 | + "cell_type": "code", |
| 61 | + "execution_count": null, |
| 62 | + "metadata": { |
| 63 | + "vscode": { |
| 64 | + "languageId": "plaintext" |
| 65 | + } |
| 66 | + }, |
| 67 | + "outputs": [], |
| 68 | + "source": [ |
| 69 | + "house.describe()" |
| 70 | + ] |
| 71 | + }, |
| 72 | + { |
| 73 | + "cell_type": "code", |
| 74 | + "execution_count": null, |
| 75 | + "metadata": { |
| 76 | + "vscode": { |
| 77 | + "languageId": "plaintext" |
| 78 | + } |
| 79 | + }, |
| 80 | + "outputs": [], |
| 81 | + "source": [ |
| 82 | + "house.columns" |
| 83 | + ] |
| 84 | + }, |
| 85 | + { |
| 86 | + "cell_type": "code", |
| 87 | + "execution_count": null, |
| 88 | + "metadata": { |
| 89 | + "vscode": { |
| 90 | + "languageId": "plaintext" |
| 91 | + } |
| 92 | + }, |
| 93 | + "outputs": [], |
| 94 | + "source": [ |
| 95 | + "y=house[ 'MEDV']\n" |
| 96 | + ] |
| 97 | + }, |
| 98 | + { |
| 99 | + "cell_type": "code", |
| 100 | + "execution_count": null, |
| 101 | + "metadata": { |
| 102 | + "vscode": { |
| 103 | + "languageId": "plaintext" |
| 104 | + } |
| 105 | + }, |
| 106 | + "outputs": [], |
| 107 | + "source": [ |
| 108 | + "X=house[['CRIM', 'ZN', 'INDUS', 'CHAS', 'NX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX',\n", |
| 109 | + " 'PTRATIO', 'B', 'LSTAT']]" |
| 110 | + ] |
| 111 | + }, |
| 112 | + { |
| 113 | + "cell_type": "code", |
| 114 | + "execution_count": null, |
| 115 | + "metadata": { |
| 116 | + "vscode": { |
| 117 | + "languageId": "plaintext" |
| 118 | + } |
| 119 | + }, |
| 120 | + "outputs": [], |
| 121 | + "source": [ |
| 122 | + "from sklearn.model_selection import train_test_split\n", |
| 123 | + "X_train,X_test,y_train,y_test= train_test_split(X,y)" |
| 124 | + ] |
| 125 | + }, |
| 126 | + { |
| 127 | + "cell_type": "code", |
| 128 | + "execution_count": null, |
| 129 | + "metadata": { |
| 130 | + "vscode": { |
| 131 | + "languageId": "plaintext" |
| 132 | + } |
| 133 | + }, |
| 134 | + "outputs": [], |
| 135 | + "source": [ |
| 136 | + "from sklearn.linear_model import LinearRegression\n", |
| 137 | + "model= LinearRegression()\n", |
| 138 | + "model.fit(X_train,y_train)" |
| 139 | + ] |
| 140 | + }, |
| 141 | + { |
| 142 | + "cell_type": "code", |
| 143 | + "execution_count": null, |
| 144 | + "metadata": { |
| 145 | + "vscode": { |
| 146 | + "languageId": "plaintext" |
| 147 | + } |
| 148 | + }, |
| 149 | + "outputs": [], |
| 150 | + "source": [ |
| 151 | + "y_pred=model.predict(X_test)" |
| 152 | + ] |
| 153 | + }, |
| 154 | + { |
| 155 | + "cell_type": "code", |
| 156 | + "execution_count": null, |
| 157 | + "metadata": { |
| 158 | + "vscode": { |
| 159 | + "languageId": "plaintext" |
| 160 | + } |
| 161 | + }, |
| 162 | + "outputs": [], |
| 163 | + "source": [ |
| 164 | + "from sklearn.metrics import mean_absolute_percentage_error\n", |
| 165 | + "mean_absolute_percentage_error(y_test,y_pred)" |
| 166 | + ] |
| 167 | + }, |
| 168 | + { |
| 169 | + "cell_type": "code", |
| 170 | + "execution_count": null, |
| 171 | + "metadata": { |
| 172 | + "vscode": { |
| 173 | + "languageId": "plaintext" |
| 174 | + } |
| 175 | + }, |
| 176 | + "outputs": [], |
| 177 | + "source": [ |
| 178 | + "model.intercept_\n" |
| 179 | + ] |
| 180 | + }, |
| 181 | + { |
| 182 | + "cell_type": "code", |
| 183 | + "execution_count": null, |
| 184 | + "metadata": { |
| 185 | + "vscode": { |
| 186 | + "languageId": "plaintext" |
| 187 | + } |
| 188 | + }, |
| 189 | + "outputs": [], |
| 190 | + "source": [ |
| 191 | + "model.coef_" |
| 192 | + ] |
| 193 | + }, |
| 194 | + { |
| 195 | + "cell_type": "code", |
| 196 | + "execution_count": null, |
| 197 | + "metadata": { |
| 198 | + "vscode": { |
| 199 | + "languageId": "plaintext" |
| 200 | + } |
| 201 | + }, |
| 202 | + "outputs": [], |
| 203 | + "source": [ |
| 204 | + "# Example test values (replace with actual test values you want)\n", |
| 205 | + "test_values = pd.DataFrame({\n", |
| 206 | + " 'CRIM': [0.1], # Crime rate\n", |
| 207 | + " 'ZN': [20], # Proportion of residential land zoned\n", |
| 208 | + " 'INDUS': [5.0], # Proportion of non-retail business acres\n", |
| 209 | + " 'CHAS': [0], # Charles River dummy variable\n", |
| 210 | + " 'NX': [0.5], # Nitric oxide concentration\n", |
| 211 | + " 'RM': [6], # Average number of rooms\n", |
| 212 | + " 'AGE': [65], # Proportion of owner-occupied units built before 1940\n", |
| 213 | + " 'DIS': [4], # Distance to employment centers\n", |
| 214 | + " 'RAD': [2], # Index of accessibility to highways\n", |
| 215 | + " 'TAX': [300], # Property tax rate\n", |
| 216 | + " 'PTRATIO': [15],# Pupil-teacher ratio\n", |
| 217 | + " 'B': [395], # Proportion of African Americans\n", |
| 218 | + " 'LSTAT': [12] # % lower status of the population\n", |
| 219 | + "})\n", |
| 220 | + "\n", |
| 221 | + "# Use the trained model to make predictions\n", |
| 222 | + "y_test_pred = model.predict(test_values)\n", |
| 223 | + "print(f\"Predicted House Price: {y_test_pred[0]}\")\n" |
| 224 | + ] |
| 225 | + } |
| 226 | + ], |
| 227 | + "metadata": { |
| 228 | + "language_info": { |
| 229 | + "name": "python" |
| 230 | + } |
| 231 | + }, |
| 232 | + "nbformat": 4, |
| 233 | + "nbformat_minor": 2 |
| 234 | +} |
0 commit comments