|
| 1 | +"""Evaluation metrics module for Medical Appointment No-Shows model. |
| 2 | +
|
| 3 | +This module provides comprehensive evaluation metrics including accuracy, |
| 4 | +precision, recall, F1-score, confusion matrix, and ROC-AUC score. |
| 5 | +""" |
| 6 | + |
| 7 | +import numpy as np |
| 8 | +import matplotlib.pyplot as plt |
| 9 | +from sklearn.metrics import ( |
| 10 | + accuracy_score, precision_score, recall_score, f1_score, |
| 11 | + confusion_matrix, roc_auc_score, classification_report, |
| 12 | + roc_curve, auc |
| 13 | +) |
| 14 | +import seaborn as sns |
| 15 | + |
| 16 | + |
| 17 | +class MetricsEvaluator: |
| 18 | + """Evaluate machine learning model performance with comprehensive metrics.""" |
| 19 | + |
| 20 | + def __init__(self): |
| 21 | + self.metrics = {} |
| 22 | + self.predictions = None |
| 23 | + self.actual = None |
| 24 | + |
| 25 | + def calculate_metrics(self, y_true, y_pred, y_pred_proba=None): |
| 26 | + """Calculate comprehensive evaluation metrics. |
| 27 | + |
| 28 | + Args: |
| 29 | + y_true: True labels |
| 30 | + y_pred: Predicted labels |
| 31 | + y_pred_proba: Predicted probabilities (for ROC-AUC) |
| 32 | + |
| 33 | + Returns: |
| 34 | + dict: Dictionary containing all evaluation metrics |
| 35 | + """ |
| 36 | + self.actual = y_true |
| 37 | + self.predictions = y_pred |
| 38 | + |
| 39 | + # Calculate basic metrics |
| 40 | + self.metrics['accuracy'] = accuracy_score(y_true, y_pred) |
| 41 | + self.metrics['precision'] = precision_score(y_true, y_pred, average='weighted', zero_division=0) |
| 42 | + self.metrics['recall'] = recall_score(y_true, y_pred, average='weighted', zero_division=0) |
| 43 | + self.metrics['f1_score'] = f1_score(y_true, y_pred, average='weighted', zero_division=0) |
| 44 | + |
| 45 | + # Calculate ROC-AUC if probabilities are provided |
| 46 | + if y_pred_proba is not None: |
| 47 | + try: |
| 48 | + self.metrics['roc_auc'] = roc_auc_score(y_true, y_pred_proba) |
| 49 | + except: |
| 50 | + self.metrics['roc_auc'] = None |
| 51 | + |
| 52 | + # Confusion matrix |
| 53 | + self.metrics['confusion_matrix'] = confusion_matrix(y_true, y_pred) |
| 54 | + |
| 55 | + return self.metrics |
| 56 | + |
| 57 | + def print_report(self): |
| 58 | + """Print detailed classification report.""" |
| 59 | + if self.actual is None or self.predictions is None: |
| 60 | + print("No metrics calculated yet. Call calculate_metrics first.") |
| 61 | + return |
| 62 | + |
| 63 | + print("\n=== Classification Report ===") |
| 64 | + print(classification_report(self.actual, self.predictions)) |
| 65 | + |
| 66 | + def display_metrics(self): |
| 67 | + """Display all calculated metrics.""" |
| 68 | + print("\n=== Evaluation Metrics ===") |
| 69 | + print(f"Accuracy: {self.metrics.get('accuracy', 'N/A'):.4f}") |
| 70 | + print(f"Precision: {self.metrics.get('precision', 'N/A'):.4f}") |
| 71 | + print(f"Recall: {self.metrics.get('recall', 'N/A'):.4f}") |
| 72 | + print(f"F1-Score: {self.metrics.get('f1_score', 'N/A'):.4f}") |
| 73 | + if self.metrics.get('roc_auc'): |
| 74 | + print(f"ROC-AUC: {self.metrics.get('roc_auc', 'N/A'):.4f}") |
| 75 | + |
| 76 | + def plot_confusion_matrix(self, save_path=None): |
| 77 | + """Plot confusion matrix heatmap. |
| 78 | + |
| 79 | + Args: |
| 80 | + save_path: Path to save the plot (optional) |
| 81 | + """ |
| 82 | + cm = self.metrics.get('confusion_matrix') |
| 83 | + if cm is None: |
| 84 | + print("No confusion matrix available.") |
| 85 | + return |
| 86 | + |
| 87 | + plt.figure(figsize=(8, 6)) |
| 88 | + sns.heatmap(cm, annot=True, fmt='d', cmap='Blues') |
| 89 | + plt.title('Confusion Matrix') |
| 90 | + plt.ylabel('True Label') |
| 91 | + plt.xlabel('Predicted Label') |
| 92 | + |
| 93 | + if save_path: |
| 94 | + plt.savefig(save_path) |
| 95 | + plt.show() |
| 96 | + |
| 97 | + |
| 98 | +if __name__ == '__main__': |
| 99 | + print('Metrics Evaluator module for Medical Appointment No-Shows prediction model') |
0 commit comments