|
| 1 | +"""Medical Appointment No-Shows Prediction Model |
| 2 | +This module implements a machine learning model to predict whether a patient |
| 3 | +will miss their medical appointment using preprocessing pipeline and model training. |
| 4 | +""" |
| 5 | + |
| 6 | +import pandas as pd |
| 7 | +import numpy as np |
| 8 | +from sklearn.preprocessing import StandardScaler, LabelEncoder |
| 9 | +from sklearn.model_selection import train_test_split |
| 10 | +from sklearn.ensemble import RandomForestClassifier |
| 11 | +from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score |
| 12 | + |
| 13 | + |
| 14 | +class AppointmentPreprocessor: |
| 15 | + """Preprocessing pipeline for medical appointment data.""" |
| 16 | + |
| 17 | + def __init__(self): |
| 18 | + self.scaler = StandardScaler() |
| 19 | + self.label_encoders = {} |
| 20 | + |
| 21 | + def preprocess(self, data): |
| 22 | + """Preprocess medical appointment data. |
| 23 | + |
| 24 | + Args: |
| 25 | + data (pd.DataFrame): Raw appointment data |
| 26 | + |
| 27 | + Returns: |
| 28 | + pd.DataFrame: Preprocessed data ready for model training |
| 29 | + """ |
| 30 | + # Handle missing values |
| 31 | + data = data.fillna(data.mean(numeric_only=True)) |
| 32 | + |
| 33 | + # Encode categorical variables |
| 34 | + categorical_cols = data.select_dtypes(include=['object']).columns |
| 35 | + for col in categorical_cols: |
| 36 | + if col not in self.label_encoders: |
| 37 | + self.label_encoders[col] = LabelEncoder() |
| 38 | + data[col] = self.label_encoders[col].fit_transform(data[col].astype(str)) |
| 39 | + |
| 40 | + # Scale numerical features |
| 41 | + numerical_cols = data.select_dtypes(include=['int64', 'float64']).columns |
| 42 | + data[numerical_cols] = self.scaler.fit_transform(data[numerical_cols]) |
| 43 | + |
| 44 | + return data |
| 45 | + |
| 46 | + |
| 47 | +class AppointmentNoShowModel: |
| 48 | + """Machine Learning model for predicting appointment no-shows.""" |
| 49 | + |
| 50 | + def __init__(self): |
| 51 | + self.model = RandomForestClassifier(n_estimators=100, random_state=42) |
| 52 | + self.preprocessor = AppointmentPreprocessor() |
| 53 | + |
| 54 | + def train(self, X_train, y_train): |
| 55 | + """Train the model. |
| 56 | + |
| 57 | + Args: |
| 58 | + X_train: Training features |
| 59 | + y_train: Training labels |
| 60 | + """ |
| 61 | + self.model.fit(X_train, y_train) |
| 62 | + |
| 63 | + def predict(self, X_test): |
| 64 | + """Make predictions. |
| 65 | + |
| 66 | + Args: |
| 67 | + X_test: Test features |
| 68 | + |
| 69 | + Returns: |
| 70 | + predictions: Predicted labels |
| 71 | + """ |
| 72 | + return self.model.predict(X_test) |
| 73 | + |
| 74 | + def evaluate(self, X_test, y_test): |
| 75 | + """Evaluate model performance. |
| 76 | + |
| 77 | + Args: |
| 78 | + X_test: Test features |
| 79 | + y_test: Test labels |
| 80 | + |
| 81 | + Returns: |
| 82 | + dict: Performance metrics |
| 83 | + """ |
| 84 | + predictions = self.predict(X_test) |
| 85 | + |
| 86 | + metrics = { |
| 87 | + 'accuracy': accuracy_score(y_test, predictions), |
| 88 | + 'precision': precision_score(y_test, predictions, average='weighted'), |
| 89 | + 'recall': recall_score(y_test, predictions, average='weighted'), |
| 90 | + 'f1': f1_score(y_test, predictions, average='weighted') |
| 91 | + } |
| 92 | + |
| 93 | + return metrics |
| 94 | + |
| 95 | + |
| 96 | +if __name__ == '__main__': |
| 97 | + # Example usage |
| 98 | + print('Medical Appointment No-Shows Prediction Model initialized.') |
0 commit comments