|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "<strong><h3>Design of PoS tagger using HMM.</h3></strong>" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "code", |
| 12 | + "execution_count": 1, |
| 13 | + "metadata": {}, |
| 14 | + "outputs": [], |
| 15 | + "source": [ |
| 16 | + "# Import liberaries\n", |
| 17 | + "from collections import defaultdict\n", |
| 18 | + "import nltk\n", |
| 19 | + "import numpy as np\n" |
| 20 | + ] |
| 21 | + }, |
| 22 | + { |
| 23 | + "cell_type": "code", |
| 24 | + "execution_count": 2, |
| 25 | + "metadata": { |
| 26 | + "colab": { |
| 27 | + "base_uri": "https://localhost:8080/" |
| 28 | + }, |
| 29 | + "id": "8waH4sMDWgrD", |
| 30 | + "outputId": "7207175d-6e0b-46bc-86ff-c1266482cafe" |
| 31 | + }, |
| 32 | + "outputs": [], |
| 33 | + "source": [ |
| 34 | + "# Class for pos tagging\n", |
| 35 | + "class PosTagging:\n", |
| 36 | + " def __init__(self, train_sent):\n", |
| 37 | + " self.transition = defaultdict(int)\n", |
| 38 | + " self.emission = defaultdict(int)\n", |
| 39 | + " self.tag_set = set()\n", |
| 40 | + " self.word_set = set()\n", |
| 41 | + "\n", |
| 42 | + " self.train(train_sent)\n", |
| 43 | + "\n", |
| 44 | + " def train(self, train_sent):\n", |
| 45 | + " for sent in train_sent:\n", |
| 46 | + " prev_tag = None\n", |
| 47 | + " for word, tag in sent:\n", |
| 48 | + " self.transition[(prev_tag, tag)] += 1\n", |
| 49 | + " self.emission[(tag, word)] += 1\n", |
| 50 | + " self.tag_set.add(tag)\n", |
| 51 | + " self.word_set.add(word)\n", |
| 52 | + " prev_tag = tag\n", |
| 53 | + "\n", |
| 54 | + " def tag(self, sentence):\n", |
| 55 | + " tagged_sentence = []\n", |
| 56 | + " for word in sentence:\n", |
| 57 | + " max_prob = 0\n", |
| 58 | + " best_tag = None\n", |
| 59 | + " for tag in self.tag_set:\n", |
| 60 | + " count_total_tag = sum(v for k, v in self.transition.items() if k[0] == tagged_sentence[-1][1]) if tagged_sentence else 1.0\n", |
| 61 | + " transition_prob = self.transition[(tagged_sentence[-1][1], tag)] / count_total_tag if tagged_sentence else 1.0\n", |
| 62 | + " emission_prob = self.emission[(tag, word)] / count_total_tag\n", |
| 63 | + " prob = transition_prob * emission_prob\n", |
| 64 | + " if prob > max_prob:\n", |
| 65 | + " max_prob = prob\n", |
| 66 | + " best_tag = tag\n", |
| 67 | + " tagged_sentence.append((word, best_tag))\n", |
| 68 | + " return tagged_sentence\n" |
| 69 | + ] |
| 70 | + }, |
| 71 | + { |
| 72 | + "cell_type": "code", |
| 73 | + "execution_count": 3, |
| 74 | + "metadata": {}, |
| 75 | + "outputs": [ |
| 76 | + { |
| 77 | + "name": "stdout", |
| 78 | + "output_type": "stream", |
| 79 | + "text": [ |
| 80 | + "[('I', 'PRP'), ('love', 'VBP'), ('nautue', None)]\n" |
| 81 | + ] |
| 82 | + } |
| 83 | + ], |
| 84 | + "source": [ |
| 85 | + "#Expamle to understand ho this works \n", |
| 86 | + "train_sent = [[('I', 'PRP'), ('love', 'VBP'), ('natural', 'JJ'), ('language', 'NN'), ('processing', 'NN')]]\n", |
| 87 | + "test_sents = \"I love nautue\".split()\n", |
| 88 | + "\n", |
| 89 | + "hmm_tagger = PosTagging(train_sent)\n", |
| 90 | + "tags = hmm_tagger.tag(test_sents)\n", |
| 91 | + "print(tags)\n" |
| 92 | + ] |
| 93 | + } |
| 94 | + ], |
| 95 | + "metadata": { |
| 96 | + "colab": { |
| 97 | + "provenance": [] |
| 98 | + }, |
| 99 | + "kernelspec": { |
| 100 | + "display_name": "Python 3", |
| 101 | + "name": "python3" |
| 102 | + }, |
| 103 | + "language_info": { |
| 104 | + "codemirror_mode": { |
| 105 | + "name": "ipython", |
| 106 | + "version": 3 |
| 107 | + }, |
| 108 | + "file_extension": ".py", |
| 109 | + "mimetype": "text/x-python", |
| 110 | + "name": "python", |
| 111 | + "nbconvert_exporter": "python", |
| 112 | + "pygments_lexer": "ipython3", |
| 113 | + "version": "3.12.2" |
| 114 | + } |
| 115 | + }, |
| 116 | + "nbformat": 4, |
| 117 | + "nbformat_minor": 0 |
| 118 | +} |
0 commit comments