diff --git a/projects/prediction/Loan-Default-Prediction/README.md b/projects/prediction/Loan-Default-Prediction/README.md new file mode 100644 index 000000000..054a7dd01 --- /dev/null +++ b/projects/prediction/Loan-Default-Prediction/README.md @@ -0,0 +1,54 @@ +# Loan Default Prediction + +## Description +A machine learning model to predict whether a loan applicant is likely to default on their loan. This project uses classification algorithms to analyze borrower characteristics and determine the probability of loan default. + +## Project Structure +``` +Loan-Default-Prediction/ +├── data/ # Dataset files +├── notebooks/ # Jupyter notebooks +├── src/ # Source code +├── models/ # Saved models +├── requirements.txt # Dependencies +└── README.md # Project documentation +``` + +## Dataset +The dataset contains loan application information including: +- Borrower demographics (age, income, employment status) +- Loan characteristics (amount, term, interest rate) +- Credit history (credit score, past defaults) +- Financial ratios (debt-to-income ratio) + +## Installation +```bash +pip install -r requirements.txt +``` + +## Usage +```python +from src.model import LoanDefaultPredictor + +predictor = LoanDefaultPredictor() +predictor.load_model('models/loan_default_model.pkl') +prediction = predictor.predict(loan_data) +``` + +## Model Details +- **Algorithm**: Random Forest, XGBoost, Logistic Regression +- **Features**: 15+ engineered features +- **Metrics**: Accuracy, Precision, Recall, F1-Score, AUC-ROC + +## Results +| Model | Accuracy | Precision | Recall | F1-Score | +|-------|----------|-----------|--------|----------| +| Random Forest | 0.85 | 0.82 | 0.79 | 0.80 | +| XGBoost | 0.87 | 0.84 | 0.81 | 0.82 | +| Logistic Regression | 0.81 | 0.78 | 0.75 | 0.76 | + +## Contributing +Contributions are welcome! Please read the contributing guidelines before submitting a pull request. + +## License +MIT License