Skip to content

Commit 5cc92a7

Browse files
kapil27openshift-merge-bot[bot]
authored andcommitted
fixed position for kueue note
1 parent e8d1f32 commit 5cc92a7

File tree

2 files changed

+69
-31
lines changed

2 files changed

+69
-31
lines changed

examples/kfto-dreambooth/README.md

Lines changed: 32 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -13,18 +13,6 @@ This example is based on HuggingFace DreamBooth Hackathon example - https://hugg
1313
* Sufficient worker nodes for your configuration(s) with NVIDIA GPUs (Ampere-based or newer recommended) or AMD GPUs (AMD Instinct MI300X or newer recommended)
1414
* AWS S3 storage available
1515

16-
> [!IMPORTANT]
17-
> **Kueue Integration (RHOAI 2.21+):**
18-
> * If using RHOAI 2.21+, the example supports Kueue integration for workload management:
19-
> * When using Kueue:
20-
> * Follow the [Configure Kueue (Optional)](#configure-kueue-optional) section to set up required resources
21-
> * Add the local-queue name label to your job configuration to enforce workload management
22-
> * You can skip Kueue usage by:
23-
> * Disabling the existing `kueue-validating-admission-policy-binding`
24-
> * Omitting the local-queue-name label in your job configuration
25-
>
26-
> **Note:** Kueue Enablement via Validating Admission Policy was introduced in RHOAI-2.21. You can skip this section if using an earlier RHOAI release version.
27-
2816

2917
## Setup
3018

@@ -57,4 +45,35 @@ This example is based on HuggingFace DreamBooth Hackathon example - https://hugg
5745
* From the workbench, clone this repository, i.e., `https://github.com/opendatahub-io/distributed-workloads.git`
5846
* Navigate to the `distributed-workloads/examples/kfto-dreambooth` directory and open the `dreambooth` notebook
5947

60-
You can now proceed with the instructions from the notebook. Enjoy!
48+
You can now proceed with the instructions from the notebook. Enjoy!
49+
50+
> [!IMPORTANT]
51+
> **Kueue Integration (RHOAI 2.21+):**
52+
> * If using RHOAI 2.21+, the example supports Kueue integration for workload management:
53+
> * When using Kueue:
54+
> * Follow the [Configure Kueue (Optional)](#configure-kueue-optional) section to set up required resources
55+
> * Add the local-queue name label to your job configuration to enforce workload management
56+
> * You can skip Kueue usage by:
57+
> * Disabling the existing `kueue-validating-admission-policy-binding`
58+
> * Omitting the local-queue-name label in your job configuration
59+
>
60+
> **Note:** Kueue Enablement via Validating Admission Policy was introduced in RHOAI-2.21. You can skip this section if using an earlier RHOAI release version.
61+
62+
### Configure Kueue (Optional)
63+
64+
> [!NOTE]
65+
> This section is only required if you plan to use Kueue for workload management (RHOAI 2.21+) or Kueue is not already configured in your cluster.
66+
67+
* Update the `nodeLabels` in the `workshops/kueue/resources/resource_flavor.yaml` file to match your AI worker nodes
68+
* Create the ResourceFlavor:
69+
```console
70+
oc apply -f workshops/kueue/resources/resource_flavor.yaml
71+
```
72+
* Create the ClusterQueue:
73+
```console
74+
oc apply -f workshops/kueue/resources/team1_cluster_queue.yaml
75+
```
76+
* Create a LocalQueue in your namespace:
77+
```console
78+
oc apply -f workshops/kueue/resources/team1_local_queue.yaml -n <your-namespace>
79+
```

examples/kfto-feast/README.md

Lines changed: 37 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -43,24 +43,6 @@ By integrating Feast into the fine-tuning pipeline, we ensure that the training
4343
* If using PEFT LoRA/QLoRA techniques, then can use NVIDIA GPUs (G4dn)
4444
* AWS S3 storage available
4545

46-
> [!IMPORTANT]
47-
> **Hugging Face Token Requirements:**
48-
> * You will need a Hugging Face token if using gated models:
49-
> * The examples use gated Llama models that require a token (e.g., https://huggingface.co/meta-llama/Llama-3.1-8B)
50-
> * Set the `HF_TOKEN` environment variable in your job configuration
51-
> * Note: You can skip the token if switching to non-gated models
52-
>
53-
> **Kueue Integration (RHOAI 2.21+):**
54-
> * If using RHOAI 2.21+, the example supports Kueue integration for workload management:
55-
> * When using Kueue:
56-
> * Follow the [Configure Kueue (Optional)](#configure-kueue-optional) section to set up required resources
57-
> * Add the local-queue name label to your job configuration to enforce workload management
58-
> * You can skip Kueue usage by:
59-
> * Disabling the existing `kueue-validating-admission-policy-binding`
60-
> * Omitting the local-queue-name label in your job configuration
61-
>
62-
> **Note:** Kueue Enablement via Validating Admission Policy was introduced in RHOAI-2.21. You can skip this section if using an earlier RHOAI release version.
63-
6446
---
6547

6648

@@ -127,4 +109,41 @@ By following this notebook, you'll gain hands-on experience in setting up a **fe
127109

128110
You can now proceed with the instructions from the notebook. Enjoy!
129111

112+
> [!IMPORTANT]
113+
> **Hugging Face Token Requirements:**
114+
> * You will need a Hugging Face token if using gated models:
115+
> * The examples use gated Llama models that require a token (e.g., https://huggingface.co/meta-llama/Llama-3.1-8B)
116+
> * Set the `HF_TOKEN` environment variable in your job configuration
117+
> * Note: You can skip the token if switching to non-gated models
118+
>
119+
> **Kueue Integration (RHOAI 2.21+):**
120+
> * If using RHOAI 2.21+, the example supports Kueue integration for workload management:
121+
> * When using Kueue:
122+
> * Follow the [Configure Kueue (Optional)](#configure-kueue-optional) section to set up required resources
123+
> * Add the local-queue name label to your job configuration to enforce workload management
124+
> * You can skip Kueue usage by:
125+
> * Disabling the existing `kueue-validating-admission-policy-binding`
126+
> * Omitting the local-queue-name label in your job configuration
127+
>
128+
> **Note:** Kueue Enablement via Validating Admission Policy was introduced in RHOAI-2.21. You can skip this section if using an earlier RHOAI release version.
129+
130+
### Configure Kueue (Optional)
131+
132+
> [!NOTE]
133+
> This section is only required if you plan to use Kueue for workload management (RHOAI 2.21+) or Kueue is not already configured in your cluster.
134+
135+
* Update the `nodeLabels` in the `workshops/kueue/resources/resource_flavor.yaml` file to match your AI worker nodes
136+
* Create the ResourceFlavor:
137+
```console
138+
oc apply -f workshops/kueue/resources/resource_flavor.yaml
139+
```
140+
* Create the ClusterQueue:
141+
```console
142+
oc apply -f workshops/kueue/resources/team1_cluster_queue.yaml
143+
```
144+
* Create a LocalQueue in your namespace:
145+
```console
146+
oc apply -f workshops/kueue/resources/team1_local_queue.yaml -n <your-namespace>
147+
```
148+
130149

0 commit comments

Comments
 (0)