|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": { |
| 7 | + "execution": { |
| 8 | + "iopub.execute_input": "2025-09-03T13:19:46.917723Z", |
| 9 | + "iopub.status.busy": "2025-09-03T13:19:46.917308Z", |
| 10 | + "iopub.status.idle": "2025-09-03T13:19:46.935181Z", |
| 11 | + "shell.execute_reply": "2025-09-03T13:19:46.934697Z", |
| 12 | + "shell.execute_reply.started": "2025-09-03T13:19:46.917698Z" |
| 13 | + } |
| 14 | + }, |
| 15 | + "outputs": [], |
| 16 | + "source": [ |
| 17 | + "def train_fashion_mnist():\n", |
| 18 | + " import os\n", |
| 19 | + "\n", |
| 20 | + " import torch\n", |
| 21 | + " import torch.distributed as dist\n", |
| 22 | + " import torch.nn.functional as F\n", |
| 23 | + " from torch import nn\n", |
| 24 | + " from torch.utils.data import DataLoader, DistributedSampler\n", |
| 25 | + " from torchvision import datasets, transforms\n", |
| 26 | + "\n", |
| 27 | + " # Define the PyTorch CNN model to be trained\n", |
| 28 | + " class Net(nn.Module):\n", |
| 29 | + " def __init__(self):\n", |
| 30 | + " super(Net, self).__init__()\n", |
| 31 | + " self.conv1 = nn.Conv2d(1, 20, 5, 1)\n", |
| 32 | + " self.conv2 = nn.Conv2d(20, 50, 5, 1)\n", |
| 33 | + " self.fc1 = nn.Linear(4 * 4 * 50, 500)\n", |
| 34 | + " self.fc2 = nn.Linear(500, 10)\n", |
| 35 | + "\n", |
| 36 | + " def forward(self, x):\n", |
| 37 | + " x = F.relu(self.conv1(x))\n", |
| 38 | + " x = F.max_pool2d(x, 2, 2)\n", |
| 39 | + " x = F.relu(self.conv2(x))\n", |
| 40 | + " x = F.max_pool2d(x, 2, 2)\n", |
| 41 | + " x = x.view(-1, 4 * 4 * 50)\n", |
| 42 | + " x = F.relu(self.fc1(x))\n", |
| 43 | + " x = self.fc2(x)\n", |
| 44 | + " return F.log_softmax(x, dim=1)\n", |
| 45 | + "\n", |
| 46 | + " # Use NCCL if a GPU is available, otherwise use Gloo as communication backend.\n", |
| 47 | + " device, backend = (\"cuda\", \"nccl\") if torch.cuda.is_available() else (\"cpu\", \"gloo\")\n", |
| 48 | + " print(f\"Using Device: {device}, Backend: {backend}\")\n", |
| 49 | + "\n", |
| 50 | + " # Setup PyTorch distributed.\n", |
| 51 | + " local_rank = int(os.getenv(\"LOCAL_RANK\", 0))\n", |
| 52 | + " dist.init_process_group(backend=backend)\n", |
| 53 | + " print(\n", |
| 54 | + " \"Distributed Training for WORLD_SIZE: {}, RANK: {}, LOCAL_RANK: {}\".format(\n", |
| 55 | + " dist.get_world_size(),\n", |
| 56 | + " dist.get_rank(),\n", |
| 57 | + " local_rank,\n", |
| 58 | + " )\n", |
| 59 | + " )\n", |
| 60 | + "\n", |
| 61 | + " # Create the model and load it into the device.\n", |
| 62 | + " device = torch.device(f\"{device}:{local_rank}\")\n", |
| 63 | + " model = nn.parallel.DistributedDataParallel(Net().to(device))\n", |
| 64 | + " optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)\n", |
| 65 | + "\n", |
| 66 | + " \n", |
| 67 | + " # Download FashionMNIST dataset only on local_rank=0 process.\n", |
| 68 | + " if local_rank == 0:\n", |
| 69 | + " dataset = datasets.FashionMNIST(\n", |
| 70 | + " \"./data\",\n", |
| 71 | + " train=True,\n", |
| 72 | + " download=True,\n", |
| 73 | + " transform=transforms.Compose([transforms.ToTensor()]),\n", |
| 74 | + " )\n", |
| 75 | + " dist.barrier()\n", |
| 76 | + " dataset = datasets.FashionMNIST(\n", |
| 77 | + " \"./data\",\n", |
| 78 | + " train=True,\n", |
| 79 | + " download=False,\n", |
| 80 | + " transform=transforms.Compose([transforms.ToTensor()]),\n", |
| 81 | + " )\n", |
| 82 | + "\n", |
| 83 | + "\n", |
| 84 | + " # Shard the dataset accross workers.\n", |
| 85 | + " train_loader = DataLoader(\n", |
| 86 | + " dataset,\n", |
| 87 | + " batch_size=100,\n", |
| 88 | + " sampler=DistributedSampler(dataset)\n", |
| 89 | + " )\n", |
| 90 | + "\n", |
| 91 | + " # TODO(astefanutti): add parameters to the training function\n", |
| 92 | + " dist.barrier()\n", |
| 93 | + " for epoch in range(1, 3):\n", |
| 94 | + " model.train()\n", |
| 95 | + "\n", |
| 96 | + " # Iterate over mini-batches from the training set\n", |
| 97 | + " for batch_idx, (inputs, labels) in enumerate(train_loader):\n", |
| 98 | + " # Copy the data to the GPU device if available\n", |
| 99 | + " inputs, labels = inputs.to(device), labels.to(device)\n", |
| 100 | + " # Forward pass\n", |
| 101 | + " outputs = model(inputs)\n", |
| 102 | + " loss = F.nll_loss(outputs, labels)\n", |
| 103 | + " # Backward pass\n", |
| 104 | + " optimizer.zero_grad()\n", |
| 105 | + " loss.backward()\n", |
| 106 | + " optimizer.step()\n", |
| 107 | + "\n", |
| 108 | + " if batch_idx % 10 == 0 and dist.get_rank() == 0:\n", |
| 109 | + " print(\n", |
| 110 | + " \"Train Epoch: {} [{}/{} ({:.0f}%)]\\tLoss: {:.6f}\".format(\n", |
| 111 | + " epoch,\n", |
| 112 | + " batch_idx * len(inputs),\n", |
| 113 | + " len(train_loader.dataset),\n", |
| 114 | + " 100.0 * batch_idx / len(train_loader),\n", |
| 115 | + " loss.item(),\n", |
| 116 | + " )\n", |
| 117 | + " )\n", |
| 118 | + "\n", |
| 119 | + " # Wait for the distributed training to complete\n", |
| 120 | + " dist.barrier()\n", |
| 121 | + " if dist.get_rank() == 0:\n", |
| 122 | + " print(\"Training is finished\")\n", |
| 123 | + "\n", |
| 124 | + " # Finally clean up PyTorch distributed\n", |
| 125 | + " dist.destroy_process_group()" |
| 126 | + ] |
| 127 | + }, |
| 128 | + { |
| 129 | + "cell_type": "code", |
| 130 | + "execution_count": null, |
| 131 | + "metadata": { |
| 132 | + "execution": { |
| 133 | + "iopub.execute_input": "2025-09-03T13:19:49.832393Z", |
| 134 | + "iopub.status.busy": "2025-09-03T13:19:49.832117Z", |
| 135 | + "iopub.status.idle": "2025-09-03T13:19:51.924613Z", |
| 136 | + "shell.execute_reply": "2025-09-03T13:19:51.924264Z", |
| 137 | + "shell.execute_reply.started": "2025-09-03T13:19:49.832371Z" |
| 138 | + }, |
| 139 | + "pycharm": { |
| 140 | + "name": "#%%\n" |
| 141 | + } |
| 142 | + }, |
| 143 | + "outputs": [], |
| 144 | + "source": [ |
| 145 | + "from kubeflow.trainer import CustomTrainer, TrainerClient\n", |
| 146 | + "\n", |
| 147 | + "client = TrainerClient()\n" |
| 148 | + ] |
| 149 | + }, |
| 150 | + { |
| 151 | + "cell_type": "code", |
| 152 | + "execution_count": null, |
| 153 | + "metadata": {}, |
| 154 | + "outputs": [], |
| 155 | + "source": [ |
| 156 | + "for runtime in client.list_runtimes():\n", |
| 157 | + " print(runtime)\n", |
| 158 | + " if runtime.name == \"universal\": # Update to actual universal image runtime once available\n", |
| 159 | + " torch_runtime = runtime" |
| 160 | + ] |
| 161 | + }, |
| 162 | + { |
| 163 | + "cell_type": "code", |
| 164 | + "execution_count": null, |
| 165 | + "metadata": { |
| 166 | + "execution": { |
| 167 | + "iopub.execute_input": "2025-09-03T13:19:56.525591Z", |
| 168 | + "iopub.status.busy": "2025-09-03T13:19:56.524936Z", |
| 169 | + "iopub.status.idle": "2025-09-03T13:19:56.721404Z", |
| 170 | + "shell.execute_reply": "2025-09-03T13:19:56.720565Z", |
| 171 | + "shell.execute_reply.started": "2025-09-03T13:19:56.525536Z" |
| 172 | + } |
| 173 | + }, |
| 174 | + "outputs": [], |
| 175 | + "source": [ |
| 176 | + "job_name = client.train(\n", |
| 177 | + " trainer=CustomTrainer(\n", |
| 178 | + " func=train_fashion_mnist,\n", |
| 179 | + " num_nodes=2,\n", |
| 180 | + " resources_per_node={\n", |
| 181 | + " \"cpu\": 2,\n", |
| 182 | + " \"memory\": \"8Gi\",\n", |
| 183 | + " },\n", |
| 184 | + " packages_to_install=[\"torchvision\"],\n", |
| 185 | + " ),\n", |
| 186 | + " runtime=torch_runtime,\n", |
| 187 | + ")" |
| 188 | + ] |
| 189 | + }, |
| 190 | + { |
| 191 | + "cell_type": "code", |
| 192 | + "execution_count": null, |
| 193 | + "metadata": { |
| 194 | + "execution": { |
| 195 | + "iopub.execute_input": "2025-09-03T13:20:01.378158Z", |
| 196 | + "iopub.status.busy": "2025-09-03T13:20:01.377707Z", |
| 197 | + "iopub.status.idle": "2025-09-03T13:20:12.713960Z", |
| 198 | + "shell.execute_reply": "2025-09-03T13:20:12.713295Z", |
| 199 | + "shell.execute_reply.started": "2025-09-03T13:20:01.378130Z" |
| 200 | + } |
| 201 | + }, |
| 202 | + "outputs": [], |
| 203 | + "source": [ |
| 204 | + "# Wait for the running status.\n", |
| 205 | + "client.wait_for_job_status(name=job_name, status={\"Running\"})" |
| 206 | + ] |
| 207 | + }, |
| 208 | + { |
| 209 | + "cell_type": "code", |
| 210 | + "execution_count": null, |
| 211 | + "metadata": { |
| 212 | + "execution": { |
| 213 | + "iopub.execute_input": "2025-09-03T13:20:24.045774Z", |
| 214 | + "iopub.status.busy": "2025-09-03T13:20:24.045480Z", |
| 215 | + "iopub.status.idle": "2025-09-03T13:20:24.772877Z", |
| 216 | + "shell.execute_reply": "2025-09-03T13:20:24.772178Z", |
| 217 | + "shell.execute_reply.started": "2025-09-03T13:20:24.045755Z" |
| 218 | + } |
| 219 | + }, |
| 220 | + "outputs": [], |
| 221 | + "source": [ |
| 222 | + "for c in client.get_job(name=job_name).steps:\n", |
| 223 | + " print(f\"Step: {c.name}, Status: {c.status}, Devices: {c.device} x {c.device_count}\\n\")" |
| 224 | + ] |
| 225 | + }, |
| 226 | + { |
| 227 | + "cell_type": "code", |
| 228 | + "execution_count": null, |
| 229 | + "metadata": { |
| 230 | + "execution": { |
| 231 | + "iopub.execute_input": "2025-09-03T13:20:26.729486Z", |
| 232 | + "iopub.status.busy": "2025-09-03T13:20:26.728951Z", |
| 233 | + "iopub.status.idle": "2025-09-03T13:20:29.596510Z", |
| 234 | + "shell.execute_reply": "2025-09-03T13:20:29.594741Z", |
| 235 | + "shell.execute_reply.started": "2025-09-03T13:20:26.729446Z" |
| 236 | + } |
| 237 | + }, |
| 238 | + "outputs": [], |
| 239 | + "source": [ |
| 240 | + "for logline in client.get_job_logs(job_name, follow=True):\n", |
| 241 | + " print(logline)" |
| 242 | + ] |
| 243 | + }, |
| 244 | + { |
| 245 | + "cell_type": "code", |
| 246 | + "execution_count": null, |
| 247 | + "metadata": {}, |
| 248 | + "outputs": [], |
| 249 | + "source": [ |
| 250 | + "client.delete_job(job_name)" |
| 251 | + ] |
| 252 | + } |
| 253 | + ], |
| 254 | + "metadata": { |
| 255 | + "kernelspec": { |
| 256 | + "display_name": "Python 3 (ipykernel)", |
| 257 | + "language": "python", |
| 258 | + "name": "python3" |
| 259 | + }, |
| 260 | + "language_info": { |
| 261 | + "codemirror_mode": { |
| 262 | + "name": "ipython", |
| 263 | + "version": 3 |
| 264 | + }, |
| 265 | + "file_extension": ".py", |
| 266 | + "mimetype": "text/x-python", |
| 267 | + "name": "python", |
| 268 | + "nbconvert_exporter": "python", |
| 269 | + "pygments_lexer": "ipython3", |
| 270 | + "version": "3.11.13" |
| 271 | + } |
| 272 | + }, |
| 273 | + "nbformat": 4, |
| 274 | + "nbformat_minor": 4 |
| 275 | +} |
0 commit comments