|
| 1 | +"""Tests for evaluating the prompt cache, with particular focus on making sure |
| 2 | +it does LRU eviction in a thread safe way correctly. |
| 3 | +""" |
| 4 | +import gc |
| 5 | +import pytest |
| 6 | +from unittest.mock import patch |
| 7 | +import torch |
| 8 | +from threading import Lock |
| 9 | +from text_generation_server import prompt_cache |
| 10 | + |
| 11 | +if torch.cuda.is_available(): |
| 12 | + DEVICE = "cuda" |
| 13 | + torch.set_default_device(DEVICE) |
| 14 | +else: |
| 15 | + DEVICE = None |
| 16 | + |
| 17 | +@pytest.fixture() |
| 18 | +def temp_prompt_cache(): |
| 19 | + """Build an empty prompt cache that we can test with.""" |
| 20 | + return prompt_cache.PrefixCache( |
| 21 | + device=DEVICE, |
| 22 | + dtype=torch.float32, |
| 23 | + max_length=256, |
| 24 | + encoder_decoder=False, |
| 25 | + decoder_start_tok_embedding=None |
| 26 | + ) |
| 27 | + |
| 28 | +### Tests for linked list operations |
| 29 | +## Adding new nodes to the list |
| 30 | +def test_single_node_list_add_as_head(): |
| 31 | + """Ensure that we can create a list with a single node correctly.""" |
| 32 | + dll = prompt_cache.DoublyLinkedList() |
| 33 | + node = prompt_cache.PromptCacheNode((torch.ones((3, 3)), torch.ones((3, 3)),), prefix_id="1") |
| 34 | + dll.add_node_as_head(node) |
| 35 | + assert dll.head is node |
| 36 | + assert dll.tail is node |
| 37 | + assert dll.head.next is None |
| 38 | + assert dll.head.prev is None |
| 39 | + assert dll.tail.next is None |
| 40 | + assert dll.tail.prev is None |
| 41 | + |
| 42 | +def test_multi_node_list_add_as_head(): |
| 43 | + """Ensure that we can create a list with a single node correctly.""" |
| 44 | + dll = prompt_cache.DoublyLinkedList() |
| 45 | + node1 = prompt_cache.PromptCacheNode((torch.ones((3, 3)), torch.ones((3, 3)),), prefix_id="1") |
| 46 | + node2 = prompt_cache.PromptCacheNode((torch.ones((3, 3)), torch.ones((3, 3)),), prefix_id="2") |
| 47 | + node3 = prompt_cache.PromptCacheNode((torch.ones((3, 3)), torch.ones((3, 3)),), prefix_id="3") |
| 48 | + dll.add_node_as_head(node1) |
| 49 | + dll.add_node_as_head(node2) |
| 50 | + dll.add_node_as_head(node3) |
| 51 | + assert dll.head is node3 |
| 52 | + assert dll.tail is node1 |
| 53 | + assert node3.prev is None |
| 54 | + assert node3.next is node2 |
| 55 | + assert node2.prev is node3 |
| 56 | + assert node2.next is node1 |
| 57 | + assert node1.next is None |
| 58 | + assert node1.prev is node2 |
| 59 | + |
| 60 | +## Removing nodes from the list |
| 61 | +def test_remove_tail_from_list_with_one_node(): |
| 62 | + """Ensure that we can remove a node from a list with one entry.""" |
| 63 | + dll = prompt_cache.DoublyLinkedList() |
| 64 | + node = prompt_cache.PromptCacheNode((torch.ones((3, 3)), torch.ones((3, 3)),), prefix_id="1") |
| 65 | + dll.add_node_as_head(node) |
| 66 | + popped_node = dll.pop_tail_node() |
| 67 | + assert dll.head is None |
| 68 | + assert dll.tail is None |
| 69 | + assert popped_node is node |
| 70 | + |
| 71 | +def test_remove_tail_from_multi_node_list(): |
| 72 | + """Ensure we can correctly remove the tail from the DLL.""" |
| 73 | + dll = prompt_cache.DoublyLinkedList() |
| 74 | + node1 = prompt_cache.PromptCacheNode((torch.ones((3, 3)), torch.ones((3, 3)),), prefix_id="1") |
| 75 | + node2 = prompt_cache.PromptCacheNode((torch.ones((3, 3)), torch.ones((3, 3)),), prefix_id="2") |
| 76 | + dll.add_node_as_head(node1) |
| 77 | + dll.add_node_as_head(node2) |
| 78 | + assert dll.tail is node1 |
| 79 | + popped_node = dll.pop_tail_node() |
| 80 | + assert popped_node is node1 |
| 81 | + assert dll.head is dll.tail |
| 82 | + assert dll.head is node2 |
| 83 | + assert node2.next is None |
| 84 | + assert node2.prev is None |
| 85 | + |
| 86 | +## Moving things within the list |
| 87 | +def test_move_to_head_with_one_node(): |
| 88 | + """Ensure that moving a node from a list with one entry is a noop.""" |
| 89 | + dll = prompt_cache.DoublyLinkedList() |
| 90 | + node = prompt_cache.PromptCacheNode((torch.ones((3, 3)), torch.ones((3, 3)),), prefix_id="1") |
| 91 | + dll.add_node_as_head(node) |
| 92 | + dll.move_node_to_head(node) |
| 93 | + assert dll.head is node |
| 94 | + assert dll.tail is node |
| 95 | + assert dll.head.next is None |
| 96 | + assert dll.head.prev is None |
| 97 | + assert dll.tail.next is None |
| 98 | + assert dll.tail.prev is None |
| 99 | + |
| 100 | +def test_move_to_head_multi_node_list(): |
| 101 | + """Ensure that moving the head to the front of a multi node list is a noop.""" |
| 102 | + dll = prompt_cache.DoublyLinkedList() |
| 103 | + node1 = prompt_cache.PromptCacheNode((torch.ones((3, 3)), torch.ones((3, 3)),), prefix_id="1") |
| 104 | + node2 = prompt_cache.PromptCacheNode((torch.ones((3, 3)), torch.ones((3, 3)),), prefix_id="2") |
| 105 | + # 2 <-> 1 |
| 106 | + dll.add_node_as_head(node1) |
| 107 | + dll.add_node_as_head(node2) |
| 108 | + # 2 <-> 1 |
| 109 | + dll.move_node_to_head(node2) |
| 110 | + assert dll.head is node2 |
| 111 | + assert dll.tail is node1 |
| 112 | + assert node2.next is node1 |
| 113 | + assert node2.prev is None |
| 114 | + assert node1.prev is node2 |
| 115 | + assert node1.next is None |
| 116 | + |
| 117 | +def test_move_to_head_from_tail_multi_node_list(): |
| 118 | + """Ensure that we can move the tail of a multinode DLL to the head correctly.""" |
| 119 | + dll = prompt_cache.DoublyLinkedList() |
| 120 | + node1 = prompt_cache.PromptCacheNode((torch.ones((3, 3)), torch.ones((3, 3)),), prefix_id="1") |
| 121 | + node2 = prompt_cache.PromptCacheNode((torch.ones((3, 3)), torch.ones((3, 3)),), prefix_id="2") |
| 122 | + # 2 <-> 1 |
| 123 | + dll.add_node_as_head(node1) |
| 124 | + dll.add_node_as_head(node2) |
| 125 | + # 1 <-> 2 |
| 126 | + dll.move_node_to_head(node1) |
| 127 | + assert dll.head is node1 |
| 128 | + assert dll.tail is node2 |
| 129 | + assert node1.next is node2 |
| 130 | + assert node1.prev is None |
| 131 | + assert node2.prev is node1 |
| 132 | + assert node2.next is None |
| 133 | + |
| 134 | +def test_move_to_head_from_middle_multi_node_list(): |
| 135 | + """Ensure that we can move a node from the middle of a multinode DLL to the head correctly.""" |
| 136 | + dll = prompt_cache.DoublyLinkedList() |
| 137 | + node1 = prompt_cache.PromptCacheNode((torch.ones((3, 3)), torch.ones((3, 3)),), prefix_id="1") |
| 138 | + node2 = prompt_cache.PromptCacheNode((torch.ones((3, 3)), torch.ones((3, 3)),), prefix_id="2") |
| 139 | + node3 = prompt_cache.PromptCacheNode((torch.ones((3, 3)), torch.ones((3, 3)),), prefix_id="3") |
| 140 | + # 3 <-> 2 <-> 1 |
| 141 | + dll.add_node_as_head(node1) |
| 142 | + dll.add_node_as_head(node2) |
| 143 | + dll.add_node_as_head(node3) |
| 144 | + # 2 <-> 3 <-> 1 |
| 145 | + dll.move_node_to_head(node2) |
| 146 | + assert dll.head is node2 |
| 147 | + assert dll.tail is node1 |
| 148 | + assert node2.next is node3 |
| 149 | + assert node2.prev is None |
| 150 | + assert node3.prev is node2 |
| 151 | + assert node3.next is node1 |
| 152 | + assert node1.prev is node3 |
| 153 | + assert node1.next is None |
| 154 | + |
| 155 | +### Tests for thread lock manager |
| 156 | +def test_thread_lock_manager(): |
| 157 | + """Ensure that when we enter/exit a lock manager, we correctly lock/unlock.""" |
| 158 | + lock = Lock() |
| 159 | + lock_manager = prompt_cache.ThreadLockManager(lock) |
| 160 | + assert not lock.locked() |
| 161 | + with lock_manager: |
| 162 | + assert lock.locked() |
| 163 | + assert not lock.locked() |
| 164 | + |
| 165 | +### Tests for prompt cache node objects |
| 166 | +def test_prompt_cache_node_tensor(): |
| 167 | + """Verify that our tensor size estimation is correct for a single tensor prompt.""" |
| 168 | + initial_memory = torch.cuda.memory_allocated() if torch.cuda.is_available() else None |
| 169 | + node = prompt_cache.PromptCacheNode(torch.ones((3, 3)), prefix_id="1") |
| 170 | + expected_memory_allocation = 512 # measured in bytes |
| 171 | + assert node.prompt_size_mb * (1024 ** 2) == expected_memory_allocation |
| 172 | + # Compare to the newly allocated cuda memory if cuda is available |
| 173 | + if initial_memory is not None: |
| 174 | + assert torch.cuda.memory_allocated() - initial_memory == expected_memory_allocation |
| 175 | + |
| 176 | +def test_prompt_cache_node_tuple_all_tensors(): |
| 177 | + """Verify that our tensor size estimation is correct for a multitensor prompt.""" |
| 178 | + initial_memory = torch.cuda.memory_allocated() if torch.cuda.is_available() else None |
| 179 | + node = prompt_cache.PromptCacheNode((torch.ones((3, 3)), torch.ones((3, 3)),), prefix_id="1") |
| 180 | + expected_memory_allocation = 1024 # measured in bytes |
| 181 | + assert node.prompt_size_mb * (1024 ** 2) == expected_memory_allocation |
| 182 | + # Compare to the newly allocated cuda memory if cuda is available |
| 183 | + if initial_memory is not None: |
| 184 | + assert torch.cuda.memory_allocated() - initial_memory == expected_memory_allocation |
| 185 | + |
| 186 | +def test_prompt_cache_node_tuple_with_one_tensor(): |
| 187 | + """Ensure our tensor size estimation is correct if we have a None in our prompt tuple.""" |
| 188 | + initial_memory = torch.cuda.memory_allocated() if torch.cuda.is_available() else None |
| 189 | + node = prompt_cache.PromptCacheNode((torch.ones((3, 3)), None,), prefix_id="1") |
| 190 | + expected_memory_allocation = 512 # measured in bytes |
| 191 | + assert node.prompt_size_mb * (1024 ** 2) == expected_memory_allocation |
| 192 | + # Compare to the newly allocated cuda memory if cuda is available |
| 193 | + if initial_memory is not None: |
| 194 | + assert torch.cuda.memory_allocated() - initial_memory == expected_memory_allocation |
| 195 | + |
| 196 | +### End to end tests for prompt cache interactions |
| 197 | +@patch("text_generation_server.prompt_cache.PrefixCache._load_embedding_tensors") |
| 198 | +def test_get_prompt_cache_no_eviction(mock_load_tensors, temp_prompt_cache): |
| 199 | + """Ensure that if we hit a prompt cache hit, its timestamp updates.""" |
| 200 | + mock_load_tensors.return_value = torch.ones((3, 3)) |
| 201 | + dummy_prompt_id = "prompt1" |
| 202 | + # Prompt cache miss; add the dummy prompt ID to the cache |
| 203 | + t1 = temp_prompt_cache.get(dummy_prompt_id) |
| 204 | + assert len(temp_prompt_cache) == 1 |
| 205 | + assert isinstance(t1, torch.Tensor) |
| 206 | + # Prompt cache hit; should retrieve the same tensor object |
| 207 | + t2 = temp_prompt_cache.get(dummy_prompt_id) |
| 208 | + assert len(temp_prompt_cache) == 1 |
| 209 | + assert t1 is t2 |
| 210 | + |
| 211 | +@patch("text_generation_server.prompt_cache.PromptCacheNode._get_prompt_size_mb") |
| 212 | +@patch("text_generation_server.prompt_cache.PrefixCache._load_embedding_tensors") |
| 213 | +def test_get_prompt_cache_with_eviction(mock_load_tensors, mock_get_prompt_size, temp_prompt_cache): |
| 214 | + """Ensure that if we need to make space, we evicted the least recently used tensor.""" |
| 215 | + mock_load_tensors.return_value = torch.ones((3, 3)) |
| 216 | + mock_get_prompt_size.return_value = (prompt_cache.PROMPT_CACHE_SIZE_MB / 2) - 1 |
| 217 | + temp_prompt_cache.get("prompt1") |
| 218 | + temp_prompt_cache.get("prompt2") |
| 219 | + # Evicts lru prompt ID (prompt1) |
| 220 | + temp_prompt_cache.get("prompt3") |
| 221 | + assert len(temp_prompt_cache) == 2 |
| 222 | + assert set(temp_prompt_cache.keys()) == set(["prompt2", "prompt3"]) |
| 223 | + # Access our oldest node, updating its timestamp |
| 224 | + temp_prompt_cache.get("prompt2") |
| 225 | + # Then ensure that adding a new prompt ID evicts prompt3 instead of prompt2 |
| 226 | + temp_prompt_cache.get("prompt4") |
| 227 | + assert len(temp_prompt_cache) == 2 |
| 228 | + assert set(temp_prompt_cache.keys()) == set(["prompt2", "prompt4"]) |
| 229 | + |
| 230 | +@patch("text_generation_server.prompt_cache.PromptCacheNode._get_prompt_size_mb") |
| 231 | +@patch("text_generation_server.prompt_cache.PrefixCache._load_embedding_tensors") |
| 232 | +def test_get_prompt_cache_tensor_too_large(mock_load_tensors, mock_get_prompt_size, temp_prompt_cache): |
| 233 | + """Ensure that an error is raised if a tensor greater than the cache size is found.""" |
| 234 | + mock_load_tensors.return_value = torch.ones((3, 3)) |
| 235 | + mock_get_prompt_size.return_value = prompt_cache.PROMPT_CACHE_SIZE_MB + 1 |
| 236 | + with pytest.raises(ValueError): |
| 237 | + temp_prompt_cache.get("prompt1") |
| 238 | + |
| 239 | +@patch("text_generation_server.prompt_cache.PrefixCache._load_embedding_tensors") |
| 240 | +def test_clear_cache(mock_load_tensors, temp_prompt_cache): |
| 241 | + """Ensure that we can clear the prompt cache correctly.""" |
| 242 | + mock_load_tensors.return_value = torch.ones((3, 3)) |
| 243 | + assert len(temp_prompt_cache) == 0 |
| 244 | + temp_prompt_cache.get("prompt1") |
| 245 | + assert len(temp_prompt_cache) == 1 |
| 246 | + temp_prompt_cache.clear() |
| 247 | + assert len(temp_prompt_cache) == 0 |
| 248 | + |
| 249 | +@patch("text_generation_server.prompt_cache.PrefixCache._load_embedding_tensors") |
| 250 | +def test_get_cache_keys(mock_load_tensors, temp_prompt_cache): |
| 251 | + """Ensure that we can grab the keys of the prompt cache correctly.""" |
| 252 | + mock_load_tensors.return_value = torch.ones((3, 3)) |
| 253 | + prompt_ids = set(["prompt1", "prompt2"]) |
| 254 | + assert len(temp_prompt_cache) == 0 |
| 255 | + for prompt_id in prompt_ids: |
| 256 | + temp_prompt_cache.get(prompt_id) |
| 257 | + assert set(temp_prompt_cache.keys()) == set(prompt_ids) |
| 258 | + |
| 259 | +@patch("text_generation_server.prompt_cache.PrefixCache._load_embedding_tensors") |
| 260 | +def test_get_cache_len(mock_load_tensors, temp_prompt_cache): |
| 261 | + """Ensure that we can get the length of the prompt cache correctly.""" |
| 262 | + mock_load_tensors.return_value = torch.ones((3, 3)) |
| 263 | + assert len(temp_prompt_cache) == 0 |
| 264 | + temp_prompt_cache.get("prompt1") |
| 265 | + temp_prompt_cache.get("prompt2") |
| 266 | + assert len(temp_prompt_cache) == 2 |
0 commit comments