|
175 | 175 | " text=user_query,\n", |
176 | 176 | " limit=3\n", |
177 | 177 | ")\n", |
178 | | - "print(f\" Relevant memories found: {len(long_term_memories)}\")\n", |
| 178 | + "print(f\" Relevant memories found: {len(long_term_memories.memories)}\")\n", |
179 | 179 | "\n", |
180 | 180 | "# Step 3: Process with LLM\n", |
181 | 181 | "print(\"\\n3. Processing with LLM...\")\n", |
|
192 | 192 | "from agent_memory_client.models import WorkingMemory, MemoryMessage\n", |
193 | 193 | "\n", |
194 | 194 | "# Convert messages to MemoryMessage format\n", |
195 | | - "memory_messages = [MemoryMessage(**msg) for msg in []]\n", |
| 195 | + "memory_messages = [\n", |
| 196 | + " MemoryMessage(role=\"user\", content=user_query),\n", |
| 197 | + " MemoryMessage(role=\"assistant\", content=response.content)\n", |
| 198 | + "]\n", |
196 | 199 | "\n", |
197 | 200 | "# Create WorkingMemory object\n", |
198 | 201 | "working_memory = WorkingMemory(\n", |
|
249 | 252 | " text=user_query_2,\n", |
250 | 253 | " limit=3\n", |
251 | 254 | ")\n", |
252 | | - "print(f\" Relevant memories found: {len(long_term_memories)}\")\n", |
| 255 | + "print(f\" Relevant memories found: {len(long_term_memories.memories)}\")\n", |
253 | 256 | "\n", |
254 | 257 | "# Step 3: Process with LLM (with conversation history)\n", |
255 | 258 | "print(\"\\n3. Processing with LLM...\")\n", |
|
378 | 381 | " text=user_query_3,\n", |
379 | 382 | " limit=5\n", |
380 | 383 | ")\n", |
381 | | - "print(f\" Relevant memories found: {len(long_term_memories)}\")\n", |
382 | | - "if long_term_memories:\n", |
| 384 | + "print(f\" Relevant memories found: {len(long_term_memories.memories)}\")\n", |
| 385 | + "if long_term_memories.memories:\n", |
383 | 386 | " print(\"\\n Retrieved memories:\")\n", |
384 | | - " for memory in long_term_memories:\n", |
| 387 | + " for memory in long_term_memories.memories:\n", |
385 | 388 | " print(f\" - {memory.text}\")\n", |
386 | 389 | "\n", |
387 | 390 | "# Step 3: Process with LLM (with long-term context)\n", |
388 | 391 | "print(\"\\n3. Processing with LLM...\")\n", |
389 | | - "context = \"\\n\".join([f\"- {m.text}\" for m in long_term_memories])\n", |
| 392 | + "context = \"\\n\".join([f\"- {m.text}\" for m in long_term_memories.memories])\n", |
390 | 393 | "system_prompt = f\"\"\"You are a helpful class scheduling agent for Redis University.\n", |
391 | 394 | "\n", |
392 | 395 | "What you know about this student:\n", |
|
408 | 411 | "from agent_memory_client.models import WorkingMemory, MemoryMessage\n", |
409 | 412 | "\n", |
410 | 413 | "# Convert messages to MemoryMessage format\n", |
411 | | - "memory_messages = [MemoryMessage(**msg) for msg in []]\n", |
| 414 | + "memory_messages = [\n", |
| 415 | + " MemoryMessage(role=\"user\", content=user_query_3),\n", |
| 416 | + " MemoryMessage(role=\"assistant\", content=response.content)\n", |
| 417 | + "]\n", |
412 | 418 | "\n", |
413 | 419 | "# Create WorkingMemory object\n", |
414 | 420 | "working_memory = WorkingMemory(\n", |
|
0 commit comments