|
1473 | 1473 | }, |
1474 | 1474 | { |
1475 | 1475 | "cell_type": "code", |
1476 | | - "execution_count": 18, |
| 1476 | + "execution_count": null, |
1477 | 1477 | "metadata": {}, |
1478 | 1478 | "outputs": [], |
1479 | 1479 | "source": [ |
|
1517 | 1517 | "\n", |
1518 | 1518 | "top_picks_for_you = get_unique_recommendations(user_id=user_id, num_results=5) # general SVD results, no filter\n", |
1519 | 1519 | "block_buster_hits = get_unique_recommendations(user_id=user_id, filters=block_buster_filter, num_results=5)\n", |
1520 | | - "classics = get_unique_recommendations(user_id=user_id, filters=classics_filter, num_results=5)\n", |
| 1520 | + "classic_movies = get_unique_recommendations(user_id=user_id, filters=classics_filter, num_results=5)\n", |
1521 | 1521 | "whats_popular = get_unique_recommendations(user_id=user_id, filters=popular_filter, num_results=5)\n", |
1522 | 1522 | "indie_hits = get_unique_recommendations(user_id=user_id, filters=indie_filter, num_results=5)" |
1523 | 1523 | ] |
1524 | 1524 | }, |
1525 | 1525 | { |
1526 | 1526 | "cell_type": "code", |
1527 | | - "execution_count": 19, |
| 1527 | + "execution_count": null, |
1528 | 1528 | "metadata": { |
1529 | 1529 | "vscode": { |
1530 | 1530 | "languageId": "ruby" |
|
1627 | 1627 | ], |
1628 | 1628 | "source": [ |
1629 | 1629 | "# put all these titles into a single pandas dataframe , where each column is one category\n", |
1630 | | - "all_recommendations = pd.DataFrame(columns=[\"top picks\", \"block busters\", \"classics\", \"what's popular\", \"indie hits\"])\n", |
1631 | | - "all_recommendations[\"top picks\"] = [m[0] for m in top_picks_for_you]\n", |
1632 | | - "all_recommendations[\"block busters\"] = [m[0] for m in block_buster_hits]\n", |
1633 | | - "all_recommendations[\"classics\"] = [m[0] for m in classics]\n", |
1634 | | - "all_recommendations[\"what's popular\"] = [m[0] for m in whats_popular]\n", |
1635 | | - "all_recommendations[\"indie hits\"] = [m[0] for m in indie_hits]\n", |
| 1630 | + "top_picks = pd.DataFrame({\"top picks\":[m[0] for m in top_picks_for_you]})\n", |
| 1631 | + "block_busters = pd.DataFrame({\"block busters\": [m[0] for m in block_buster_hits]})\n", |
| 1632 | + "classics = pd.DataFrame({\"classics\": [m[0] for m in classic_movies]})\n", |
| 1633 | + "popular = pd.DataFrame({\"what's popular\": [m[0] for m in whats_popular]})\n", |
| 1634 | + "indies = pd.DataFrame({\"indie hits\": [m[0] for m in indie_hits]})\n", |
1636 | 1635 | "\n", |
| 1636 | + "all_recommendations = pd.concat([top_picks, block_busters, classics, popular, indies], axis=1)\n", |
1637 | 1637 | "all_recommendations.head()" |
1638 | 1638 | ] |
1639 | 1639 | }, |
|
0 commit comments