Skip to content

Commit a5ddcb2

Browse files
committed
Rename Section 2: Retrieved Context Engineering with updated notebook name
Section directory renamed: - section-2-rag-foundations → section-2-retrieved-context-engineering Notebook renamed: - 01_rag_retrieved_context_in_practice.ipynb → 01_engineering_retrieved_context_with_rag.ipynb Notebook title updated: - 'RAG: Retrieved Context in Practice' → 'Engineering Retrieved Context with RAG' Updated all references across: - README.md (section title, directory path) - COURSE_SUMMARY.md (section title, notebook name) - notebooks/README.md (section title, directory path) - notebooks/section-3-memory-architecture/README.md (prerequisites, comparisons) Changes emphasize context engineering discipline and map to framework: - Section 1: Context Engineering Foundations (framework) - Section 2: Retrieved Context Engineering (context type) - Creates clear progression through the four context types
1 parent d88be0d commit a5ddcb2

File tree

7 files changed

+26
-26
lines changed

7 files changed

+26
-26
lines changed

python-recipes/context-engineering/COURSE_SUMMARY.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -60,12 +60,12 @@ None (pure theory and conceptual foundation)
6060

6161
---
6262

63-
### **Section 2: RAG Foundations** (3-4 hours)
63+
### **Section 2: Retrieved Context Engineering** (3-4 hours)
6464

6565
**Notebooks**: 1 | **Prerequisites**: Section 1
6666

6767
#### Notebooks
68-
1. **Building RAG with Redis** - Vector embeddings, semantic search, course recommendations
68+
1. **Engineering Retrieved Context with RAG** - Vector embeddings, semantic search, course recommendations
6969

7070
#### Learning Outcomes
7171
- ✅ Implement vector embeddings with OpenAI

python-recipes/context-engineering/README.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -79,13 +79,13 @@ Learn the foundational concepts of context engineering and the four context type
7979

8080
---
8181

82-
### **Section 2: RAG Foundations** (3-4 hours)
82+
### **Section 2: Retrieved Context Engineering** (3-4 hours)
8383
**1 notebook** | **Prerequisites**: Section 1
8484

8585
Build a RAG system using Redis and RedisVL for semantic course search.
8686

8787
**Notebooks**:
88-
1. **Building RAG with Redis** - Vector embeddings, semantic search, course recommendations
88+
1. **Engineering Retrieved Context with RAG** - Vector embeddings, semantic search, course recommendations
8989

9090
**Learning Outcomes**:
9191
- Implement vector embeddings with OpenAI
@@ -193,7 +193,7 @@ context-engineering/
193193
│ ├── SETUP_GUIDE.md # Detailed setup instructions
194194
│ ├── REFERENCE_AGENT_USAGE_ANALYSIS.md # Component usage analysis
195195
│ ├── section-1-context-engineering-foundations/ # Section 1 notebooks
196-
│ ├── section-2-rag-foundations/ # Section 2 notebooks
196+
│ ├── section-2-retrieved-context-engineering/ # Section 2 notebooks
197197
│ ├── section-3-memory-architecture/ # Section 3 notebooks
198198
│ ├── section-4-tool-selection/ # Section 4 notebooks
199199
│ └── section-5-optimization-production/ # Section 5 notebooks
@@ -491,7 +491,7 @@ docker-compose down -v
491491
- Learn context assembly strategies
492492
- Grasp the importance of context engineering
493493

494-
**Section 2: RAG Foundations**
494+
**Section 2: Retrieved Context Engineering**
495495
- Implement vector embeddings and semantic search
496496
- Build RAG systems with Redis and RedisVL
497497
- Create course recommendation engines

python-recipes/context-engineering/notebooks/README.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -102,7 +102,7 @@ Basic Concepts → RAG Agent → Memory Agent → Multi-Tool Agen
102102

103103
**Reference Agent Components Used**: None (conceptual foundation)
104104

105-
### 🤖 **Section 2: RAG Foundations**
105+
### 🤖 **Section 2: Retrieved Context Engineering**
106106
**Goal**: Build a complete RAG system with vector search and retrieval
107107
**Duration**: ~3-4 hours
108108
**Prerequisites**: Section 1 completed, Redis running, OpenAI API key
@@ -312,7 +312,7 @@ Students can:
312312
- ✅ Design context strategies for AI applications
313313
- ✅ Identify context engineering patterns in production systems
314314

315-
### **After Section 2: RAG Foundations**
315+
### **After Section 2: Retrieved Context Engineering**
316316
Students can:
317317
- ✅ Build complete RAG systems with Redis and RedisVL
318318
- ✅ Implement vector similarity search for intelligent retrieval
@@ -528,7 +528,7 @@ enhanced-integration/
528528
│ ├── 02_context_assembly_strategies.ipynb
529529
│ └── README.md
530530
531-
├── section-2-rag-foundations/ # Complete RAG system
531+
├── section-2-retrieved-context-engineering/ # Complete RAG system
532532
│ ├── 01_building_your_rag_agent.ipynb
533533
│ └── README.md
534534

python-recipes/context-engineering/notebooks/section-2-rag-foundations/01_rag_retrieved_context_in_practice.ipynb renamed to python-recipes/context-engineering/notebooks/section-2-retrieved-context-engineering/01_engineering_retrieved_context_with_rag.ipynb

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@
77
"source": [
88
"![Redis](https://redis.io/wp-content/uploads/2024/04/Logotype.svg?auto=webp&quality=85,75&width=120)\n",
99
"\n",
10-
"# RAG: Retrieved Context in Practice\n",
10+
"# Engineering Retrieved Context with RAG\n",
1111
"\n",
1212
"## From Context Engineering to Retrieval-Augmented Generation\n",
1313
"\n",
@@ -658,7 +658,7 @@
658658
"</pre>\n"
659659
],
660660
"text/plain": [
661-
"\u001b[1;34m🚀 Starting Course Catalog Ingestion\u001b[0m\n"
661+
"\u001B[1;34m🚀 Starting Course Catalog Ingestion\u001B[0m\n"
662662
]
663663
},
664664
"metadata": {},
@@ -671,7 +671,7 @@
671671
"</pre>\n"
672672
],
673673
"text/plain": [
674-
"\u001b[32m✅ Redis connection successful\u001b[0m\n"
674+
"\u001B[32m✅ Redis connection successful\u001B[0m\n"
675675
]
676676
},
677677
"metadata": {},
@@ -684,7 +684,7 @@
684684
"</pre>\n"
685685
],
686686
"text/plain": [
687-
"\u001b[33m🧹 Clearing existing data\u001b[0m\u001b[33m...\u001b[0m\n"
687+
"\u001B[33m🧹 Clearing existing data\u001B[0m\u001B[33m...\u001B[0m\n"
688688
]
689689
},
690690
"metadata": {},
@@ -697,7 +697,7 @@
697697
"</pre>\n"
698698
],
699699
"text/plain": [
700-
"\u001b[32m✅ Data cleared successfully\u001b[0m\n"
700+
"\u001B[32m✅ Data cleared successfully\u001B[0m\n"
701701
]
702702
},
703703
"metadata": {},
@@ -710,7 +710,7 @@
710710
"</pre>\n"
711711
],
712712
"text/plain": [
713-
"\u001b[32m✅ Loaded catalog from course_catalog_section2.json\u001b[0m\n"
713+
"\u001B[32m✅ Loaded catalog from course_catalog_section2.json\u001B[0m\n"
714714
]
715715
},
716716
"metadata": {},
@@ -723,7 +723,7 @@
723723
"</pre>\n"
724724
],
725725
"text/plain": [
726-
" Majors: \u001b[1;36m5\u001b[0m\n"
726+
" Majors: \u001B[1;36m5\u001B[0m\n"
727727
]
728728
},
729729
"metadata": {},
@@ -736,7 +736,7 @@
736736
"</pre>\n"
737737
],
738738
"text/plain": [
739-
" Courses: \u001b[1;36m50\u001b[0m\n"
739+
" Courses: \u001B[1;36m50\u001B[0m\n"
740740
]
741741
},
742742
"metadata": {},
@@ -773,7 +773,7 @@
773773
"</pre>\n"
774774
],
775775
"text/plain": [
776-
"\u001b[32m✅ Ingested \u001b[0m\u001b[1;32m5\u001b[0m\u001b[32m majors\u001b[0m\n"
776+
"\u001B[32m✅ Ingested \u001B[0m\u001B[1;32m5\u001B[0m\u001B[32m majors\u001B[0m\n"
777777
]
778778
},
779779
"metadata": {},
@@ -866,7 +866,7 @@
866866
"</pre>\n"
867867
],
868868
"text/plain": [
869-
"\u001b[32m✅ Ingested \u001b[0m\u001b[1;32m50\u001b[0m\u001b[32m courses\u001b[0m\n"
869+
"\u001B[32m✅ Ingested \u001B[0m\u001B[1;32m50\u001B[0m\u001B[32m courses\u001B[0m\n"
870870
]
871871
},
872872
"metadata": {},
@@ -879,7 +879,7 @@
879879
"</pre>\n"
880880
],
881881
"text/plain": [
882-
"\u001b[34m📊 Verification - Courses: \u001b[0m\u001b[1;34m50\u001b[0m\u001b[34m, Majors: \u001b[0m\u001b[1;34m5\u001b[0m\n"
882+
"\u001B[34m📊 Verification - Courses: \u001B[0m\u001B[1;34m50\u001B[0m\u001B[34m, Majors: \u001B[0m\u001B[1;34m5\u001B[0m\n"
883883
]
884884
},
885885
"metadata": {},
@@ -892,7 +892,7 @@
892892
"</pre>\n"
893893
],
894894
"text/plain": [
895-
"\u001b[1;32m🎉 Ingestion completed successfully!\u001b[0m\n"
895+
"\u001B[1;32m🎉 Ingestion completed successfully!\u001B[0m\n"
896896
]
897897
},
898898
"metadata": {},

python-recipes/context-engineering/notebooks/section-2-rag-foundations/README.md renamed to python-recipes/context-engineering/notebooks/section-2-retrieved-context-engineering/README.md

File renamed without changes.

python-recipes/context-engineering/notebooks/section-2-rag-foundations/course_catalog_section2.json renamed to python-recipes/context-engineering/notebooks/section-2-retrieved-context-engineering/course_catalog_section2.json

File renamed without changes.

python-recipes/context-engineering/notebooks/section-3-memory-architecture/README.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
## Overview
44

5-
This section teaches **memory-enhanced context engineering** by building on Section 2's RAG system. You'll learn how to add **working memory** (conversation history) and **long-term memory** (persistent knowledge) to create stateful, personalized conversations.
5+
This section teaches **memory-enhanced context engineering** by building on Section 2's retrieved context system. You'll learn how to add **working memory** (conversation history) and **long-term memory** (persistent knowledge) to create stateful, personalized conversations.
66

77
## Learning Objectives
88

@@ -11,13 +11,13 @@ By the end of this section, you will:
1111
1. **Understand** why memory is essential for context engineering (the grounding problem)
1212
2. **Implement** working memory for conversation continuity
1313
3. **Use** long-term memory for persistent user knowledge
14-
4. **Integrate** memory with Section 2's RAG system
14+
4. **Integrate** memory with Section 2's retrieved context system
1515
5. **Build** a complete memory-enhanced course advisor
1616

1717
## Prerequisites
1818

1919
- ✅ Completed Section 1 (Context Engineering Foundations)
20-
- ✅ Completed Section 2 (RAG Foundations)
20+
- ✅ Completed Section 2 (Retrieved Context Engineering)
2121
- ✅ Redis instance running
2222
- ✅ Agent Memory Server running (see reference-agent/README.md)
2323
- ✅ OpenAI API key configured
@@ -81,7 +81,7 @@ User Query
8181
1. **System Context** (Static) - ✅ Section 2
8282
2. **User Context** (Dynamic, User-Specific) - ✅ Section 2 + Long-term Memory
8383
3. **Conversation Context** (Dynamic, Session-Specific) - ✨ **Working Memory**
84-
4. **Retrieved Context** (Dynamic, Query-Specific) - ✅ Section 2 RAG
84+
4. **Retrieved Context** (Dynamic, Query-Specific) - ✅ Section 2
8585

8686
## Technology Stack
8787

@@ -93,7 +93,7 @@ User Query
9393

9494
## Key Differences from Section 2
9595

96-
| Feature | Section 2 (Stateless RAG) | Section 3 (Memory-Enhanced RAG) |
96+
| Feature | Section 2 (Retrieved Context) | Section 3 (Memory-Enhanced) |
9797
|---------|---------------------------|----------------------------------|
9898
| Conversation History | ❌ None | ✅ Working Memory |
9999
| Multi-turn Conversations | ❌ Each query independent | ✅ Context carries forward |

0 commit comments

Comments
 (0)