Skip to content

Commit df2b818

Browse files
Add session manager recipe examples (#29)
* adds session manager recipe * fixes colab path * adds multiple session example notebook * adds new notebook to README * renames notebooks, formats markdown comments for clarity
1 parent 6c591a7 commit df2b818

File tree

3 files changed

+1055
-1
lines changed

3 files changed

+1055
-1
lines changed

README.md

Lines changed: 7 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -25,6 +25,7 @@
2525
- [Semantic cache](#semantic-cache)
2626
- [Advanced RAG](#advanced-rag)
2727
- [Recommendation systems](#recommendation-systems)
28+
- [LLM Session Management](#llm-session-management)
2829
- [Integrations](#integrations)
2930
- [Additional content](#additional-content)
3031
- [Benchmarks](#benchmarks)
@@ -55,7 +56,6 @@ Need specific sample code to help get started with Redis? Start here.
5556
| [/redis-intro/redis_intro.ipynb](python-recipes/redis-intro/redis_intro.ipynb) | The place to start if brand new to Redis |
5657
| [/vector-search/00_redispy.ipynb](python-recipes/vector-search/00_redispy.ipynb) | Vector search with Redis python client |
5758
| [/vector-search/01_redisvl.ipynb](python-recipes/vector-search/01_redisvl.ipynb) | Vector search with Redis Vector Library |
58-
5959
## Getting started with RAG
6060

6161
**Retrieval Augmented Generation** (aka RAG) is a technique to enhance the ability of an LLM to respond to user queries. The **retrieval** part of RAG is supported by a vector database, which can return semantically relevant results to a user’s query, serving as contextual information to **augment** the **generative** capabilities of an LLM.
@@ -71,6 +71,12 @@ To get started with RAG, either from scratch or using a popular framework like L
7171
| [/RAG/05_nvidia_ai_rag_redis.ipynb](python-recipes/RAG/05_nvidia_ai_rag_redis.ipynb) | RAG using Redis and Nvidia |
7272
| [/RAG/06_ragas_evaluation.ipynb](python-recipes/RAG/06_ragas_evaluation.ipynb) | Utilize RAGAS framework to evaluate RAG performance |
7373

74+
## LLM Session Management
75+
LLMs are stateless. To maintain context within a conversation chat sessions must be stored and resent to the LLM. Redis manages the storage and retrieval of chat sessions to maintain context and conversational relevance.
76+
| Recipe | Description |
77+
| --- | --- |
78+
| [/llm-session-manager/00_session_manager.ipynb](python-recipes/llm-session-manager/00_llm_session_manager.ipynb) | LLM session manager with semantic similarity |
79+
| [/llm-session-manager/01_multiple_sessions.ipynb](python-recipes/llm-session-manager/01_multiple_sessions.ipynb) | Handle multiple simultaneous chats with one instance |
7480

7581
## Semantic Cache
7682
An estimated 31% of LLM queries are potentially redundant ([source](https://arxiv.org/pdf/2403.02694)). Redis enables semantic caching to help cut down on LLM costs quickly.

0 commit comments

Comments
 (0)