Skip to content

Commit e1afd6f

Browse files
New links and formatting improvements (#46)
* new links and formatting improvements
1 parent c75b26e commit e1afd6f

File tree

1 file changed

+54
-61
lines changed

1 file changed

+54
-61
lines changed

README.md

Lines changed: 54 additions & 61 deletions
Original file line numberDiff line numberDiff line change
@@ -7,57 +7,48 @@
77
![Language](https://img.shields.io/github/languages/top/redis-developer/redis-ai-resources)
88
![GitHub last commit](https://img.shields.io/github/last-commit/redis-developer/redis-ai-resources)
99

10+
11+
1012
</div>
1113
<div>
12-
✨ A curated repository of code recipes, demos, and resources for basic and advanced Redis use cases in the AI ecosystem. ✨
14+
✨ A curated repository of code recipes, demos, tutorials and resources for basic and advanced Redis use cases in the AI ecosystem. ✨
1315
</div>
1416

1517
<div></div>
16-
17-
1818
<br>
19-
</div>
2019

21-
# Table of Contents
22-
- [Demos](#Demos)
23-
- [Recipes](#Recipes)
24-
- [RAG](#getting-started-with-rag)
25-
- [Semantic cache](#semantic-cache)
26-
- [Advanced RAG](#advanced-rag)
27-
- [Recommendation systems](#recommendation-systems)
28-
- [LLM Session Management](#llm-session-management)
29-
- [Integrations](#integrations)
30-
- [Additional content](#additional-content)
31-
- [Benchmarks](#benchmarks)
32-
- [Documentation](#documentation)
20+
[**Demos**](#demos) | [**Recipes**](#recipes) | [**Tutorials**](#tutorials) | [**Integrations**](#integrations) | [**Content**](#content) | [**Benchmarks**](#benchmarks) | [**Docs**](#docs)
3321

22+
</div>
3423
<br>
3524

36-
# Demos
37-
No faster way to get started than by diving in and playing around with one of our demos.
25+
## Demos
26+
No faster way to get started than by diving in and playing around with a demo.
3827

3928
| Demo | Description |
4029
| --- | --- |
41-
| [Redis RAG Workbench](https://github.com/redis-developer/redis-rag-workbench) | Interactive demo to build a RAG-based chatbot over an arbitrary PDF. Toggle different settings and configurations to improve chatbot performance and quality. Integrates RedisVL, LangChain, RAGAs, and more. |
30+
| [Redis RAG Workbench](https://github.com/redis-developer/redis-rag-workbench) | Interactive demo to build a RAG-based chatbot over a user-uploaded PDF. Toggle different settings and configurations to improve chatbot performance and quality. Utilizes RedisVL, LangChain, RAGAs, and more. |
4231
| [ArxivChatGuru](https://github.com/redis-developer/ArxivChatGuru) | Streamlit demo of RAG over Arxiv documents with Redis & OpenAI |
4332
| [Redis VSS - Simple Streamlit Demo](https://github.com/antonum/Redis-VSS-Streamlit) | Streamlit demo of Redis Vector Search |
44-
| [Vertex AI & Redis](https://github.com/redis-developer/gcp-redis-llm-stack/tree/main) | A tutorial featuring Redis with Vertex AI |
45-
| [Agentic RAG](https://github.com/redis-developer/agentic-rag) | A tutorial focused on agentic RAG with LlamaIndex and Cohere |
4633
| [ArXiv Search](https://github.com/redis-developer/redis-arxiv-search) | Full stack implementation of Redis with React FE |
4734
| [Product Search](https://github.com/redis-developer/redis-product-search) | Vector search with Redis Stack and Redis Enterprise |
4835

49-
# Recipes
5036

51-
Need specific sample code to help get started with Redis? Start here.
37+
## Recipes
5238

53-
## Getting started with Redis & Vector Search
39+
Need quickstarts to begin your Redis AI journey? **Start here.**
40+
41+
### Getting started with Redis & Vector Search
5442

5543
| Recipe | Description |
5644
| --- | --- |
5745
| [/redis-intro/00_redis_intro.ipynb](/python-recipes/redis-intro/00_redis_intro.ipynb) | The place to start if brand new to Redis |
5846
| [/vector-search/00_redispy.ipynb](/python-recipes/vector-search/00_redispy.ipynb) | Vector search with Redis python client |
5947
| [/vector-search/01_redisvl.ipynb](/python-recipes/vector-search/01_redisvl.ipynb) | Vector search with Redis Vector Library |
60-
## Getting started with RAG
48+
| [/vector-search/02_hybrid_search.ipynb](/python-recipes/vector-search/02_hybrid_search.ipynb) | Hybrid search techniques with Redis (BM25 + Vector)
49+
50+
51+
### Retrieval Augmented Generation (RAG)
6152

6253
**Retrieval Augmented Generation** (aka RAG) is a technique to enhance the ability of an LLM to respond to user queries. The **retrieval** part of RAG is supported by a vector database, which can return semantically relevant results to a user’s query, serving as contextual information to **augment** the **generative** capabilities of an LLM.
6354

@@ -68,84 +59,86 @@ To get started with RAG, either from scratch or using a popular framework like L
6859
| [/RAG/01_redisvl.ipynb](python-recipes/RAG/01_redisvl.ipynb) | RAG from scratch with the Redis Vector Library |
6960
| [/RAG/02_langchain.ipynb](python-recipes/RAG/02_langchain.ipynb) | RAG using Redis and LangChain |
7061
| [/RAG/03_llamaindex.ipynb](python-recipes/RAG/03_llamaindex.ipynb) | RAG using Redis and LlamaIndex |
71-
| [/RAG/04_advanced_redisvl.ipynb](python-recipes/RAG/04_advanced_redisvl.ipynb) | Advanced RAG with redisvl |
72-
| [/RAG/05_nvidia_ai_rag_redis.ipynb](python-recipes/RAG/05_nvidia_ai_rag_redis.ipynb) | RAG using Redis and Nvidia |
73-
| [/RAG/06_ragas_evaluation.ipynb](python-recipes/RAG/06_ragas_evaluation.ipynb) | Utilize RAGAS framework to evaluate RAG performance |
62+
| [/RAG/04_advanced_redisvl.ipynb](python-recipes/RAG/04_advanced_redisvl.ipynb) | Advanced RAG techniques |
63+
| [/RAG/05_nvidia_ai_rag_redis.ipynb](python-recipes/RAG/05_nvidia_ai_rag_redis.ipynb) | RAG using Redis and Nvidia NIMs |
64+
| [/RAG/06_ragas_evaluation.ipynb](python-recipes/RAG/06_ragas_evaluation.ipynb) | Utilize the RAGAS framework to evaluate RAG performance |
7465

75-
## LLM Session Management
66+
### LLM Memory
7667
LLMs are stateless. To maintain context within a conversation chat sessions must be stored and resent to the LLM. Redis manages the storage and retrieval of chat sessions to maintain context and conversational relevance.
7768
| Recipe | Description |
7869
| --- | --- |
7970
| [/llm-session-manager/00_session_manager.ipynb](python-recipes/llm-session-manager/00_llm_session_manager.ipynb) | LLM session manager with semantic similarity |
8071
| [/llm-session-manager/01_multiple_sessions.ipynb](python-recipes/llm-session-manager/01_multiple_sessions.ipynb) | Handle multiple simultaneous chats with one instance |
8172

82-
## Semantic Cache
73+
### Semantic Cache
8374
An estimated 31% of LLM queries are potentially redundant ([source](https://arxiv.org/pdf/2403.02694)). Redis enables semantic caching to help cut down on LLM costs quickly.
8475

8576
| Recipe | Description |
8677
| --- | --- |
8778
| [/semantic-cache/doc2cache_llama3_1.ipynb](python-recipes/semantic-cache/doc2cache_llama3_1.ipynb) | Build a semantic cache using the Doc2Cache framework and Llama3.1 |
8879
| [/semantic-cache/semantic_caching_gemini.ipynb](python-recipes/semantic-cache/semantic_caching_gemini.ipynb) | Build a semantic cache with Redis and Google Gemini |
8980

90-
## Advanced RAG
91-
For further insights on enhancing RAG applications with dense content representations, query re-writing, and other techniques.
9281

93-
| Recipe | Description |
94-
| --- | --- |
95-
[/RAG/04_advanced_redisvl.ipynb](python-recipes/RAG/04_advanced_redisvl.ipynb) | Notebook for additional tips and techniques to improve RAG quality |
82+
### Agents
9683

97-
## Agents
98-
/Users/robert.shelton/Documents/redis-ai-resources/python-recipes/agents/01_crewai_langgraph_redis.ipynb
9984
| Recipe | Description |
10085
| --- | --- |
10186
[/agents/00_langgraph_redis_agentic_rag.ipynb](python-recipes/agents/00_langgraph_redis_agentic_rag.ipynb) | Notebook to get started with lang-graph and agents |
10287
[/agents/01_crewai_langgraph_redis.ipynb](python-recipes/agents/01_crewai_langgraph_redis.ipynb) | Notebook to get started with lang-graph and agents |
10388

104-
## Recommendation systems
89+
### Recommendation systems
10590

10691
| Recipe | Description |
10792
| --- | --- |
108-
| [/recommendation-systems/content_filtering.ipynb](python-recipes/recommendation-systems/00_content_filtering.ipynb) | Intro content filtering example with redisvl |
109-
| [/recommendation-systems/collaborative_filtering.ipynb](python-recipes/recommendation-systems/01_collaborative_filtering.ipynb) | Intro collaborative filtering example with redisvl |
93+
| [/recommendation-systems/00_content_filtering.ipynb](python-recipes/recommendation-systems/00_content_filtering.ipynb) | Intro content filtering example with redisvl |
94+
| [/recommendation-systems/01_collaborative_filtering.ipynb](python-recipes/recommendation-systems/01_collaborative_filtering.ipynb) | Intro collaborative filtering example with redisvl |
11095

111-
### See also
112-
An exciting example of how Redis can power production-ready systems is highlighted in our collaboration with [NVIDIA](https://developer.nvidia.com/blog/offline-to-online-feature-storage-for-real-time-recommendation-systems-with-nvidia-merlin/) to construct a state-of-the-art recommendation system.
11396

114-
Within [this repository](https://github.com/redis-developer/redis-nvidia-recsys), you'll find three examples, each escalating in complexity, showcasing the process of building such a system.
97+
## Tutorials
98+
Need a *deeper-dive* through different use cases and topics?
11599

100+
| Tutorial | Description |
101+
| -------- | ------------ |
102+
| [RAG on VertexAI](https://github.com/redis-developer/gcp-redis-llm-stack/tree/main) | A RAG tutorial featuring Redis with Vertex AI |
103+
| [Agentic RAG](https://github.com/redis-developer/agentic-rag) | A tutorial focused on agentic RAG with LlamaIndex and Cohere |
104+
| [Recommendation Systems w/ NVIDIA Merlin & Redis]((https://github.com/redis-developer/redis-nvidia-recsys)) | Three examples, each escalating in complexity, showcasing the process of building a realtime recsys with NVIDIA and Redis |
116105

117-
# Integrations/Tools
118-
- [⭐ RedisVL](https://github.com/redis/redis-vl-python) - a dedicated Python client lib for Redis as a Vector DB.
119-
- [⭐ AWS Bedrock](https://redis.io/docs/latest/integrate/amazon-bedrock/) - Streamlines GenAI deployment by offering foundational models as a unified API.
120-
- [⭐ LangChain Python](https://github.com/langchain-ai/langchain) - popular Python client lib for building LLM applications.
121-
powered by Redis.
122-
- [⭐ LangChain JS](https://github.com/langchain-ai/langchainjs) - popular JS client lib for building LLM applications.
123-
powered by Redis.
124-
- [⭐ LlamaIndex](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/RedisIndexDemo.html) - LlamaIndex Integration for Redis as a vector Database (formerly GPT-index).
125-
- [Semantic Kernel](https://github.com/microsoft/semantic-kernel/tree/main) - popular lib by MSFT to integrate LLMs with plugins.
126-
- [RelevanceAI](https://relevance.ai/) - Platform to ag, search and analyze unstructured data faster, built on Redis.
127-
- [DocArray](https://docs.docarray.org/user_guide/storing/index_redis/) - DocArray Integration of Redis as a VectorDB by Jina AI.
128106

107+
## Integrations
108+
Redis integrates with many different players in the AI ecosystem. Here's a curated list below:
129109

130-
# Additional content
110+
| Integration | Description |
111+
| --- | --- |
112+
| [RedisVL](https://github.com/redis/redis-vl-python) | A dedicated Python client lib for Redis as a Vector DB |
113+
| [AWS Bedrock](https://redis.io/docs/latest/integrate/amazon-bedrock/) | Streamlines GenAI deployment by offering foundational models as a unified API |
114+
| [LangChain Python](https://github.com/langchain-ai/langchain) | Popular Python client lib for building LLM applications powered by Redis |
115+
| [LangChain JS](https://github.com/langchain-ai/langchainjs) | Popular JS client lib for building LLM applications powered by Redis |
116+
| [LlamaIndex](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/RedisIndexDemo.html) | LlamaIndex Integration for Redis as a vector Database (formerly GPT-index) |
117+
| [LiteLLM](https://www.litellm.ai/) | Popular LLM proxy layer to help manage and streamline usage of multiple foundation models |
118+
| [Semantic Kernel](https://github.com/microsoft/semantic-kernel/tree/main) | Popular lib by MSFT to integrate LLMs with plugins |
119+
| [RelevanceAI](https://relevance.ai/) | Platform to tag, search and analyze unstructured data faster, built on Redis |
120+
| [DocArray](https://docs.docarray.org/user_guide/storing/index_redis/) | DocArray Integration of Redis as a VectorDB by Jina AI |
121+
122+
123+
## Content
131124
- [Vector Similarity Search: From Basics to Production](https://mlops.community/vector-similarity-search-from-basics-to-production/) - Introductory blog post to VSS and Redis as a VectorDB.
132-
- [AI-Powered Document Search](https://datasciencedojo.com/blog/ai-powered-document-search/) - Blog post covering AI Powered Document Search Use Cases & Architectures.
133-
- [Vector Search on Azure](https://techcommunity.microsoft.com/t5/azure-developer-community-blog/vector-similarity-search-with-azure-cache-for-redis-enterprise/ba-p/3822059) - Using Azure Redis Enterprise for Vector Search
125+
- [Improving RAG quality with RAGAs](https://redis.io/blog/get-better-rag-responses-with-ragas/)
126+
- [Level-up RAG with RedisVL](https://redis.io/blog/level-up-rag-apps-with-redis-vector-library/)
134127
- [Vector Databases and Large Language Models](https://youtu.be/GJDN8u3Y-T4) - Talk given at LLMs in Production Part 1 by Sam Partee.
135128
- [Vector Databases and AI-powered Search Talk](https://www.youtube.com/watch?v=g2bNHLeKlAg) - Video "Vector Databases and AI-powered Search" given by Sam Partee at SDSC 2023.
136-
- [Engineering Lab Review](https://mlops.community/redis-vector-search-engineering-lab-review/) - Review of the first Redis VSS Hackathon.
137129
- [Real-Time Product Recommendations](https://jina.ai/news/real-time-product-recommendation-using-redis-and-docarray/) - Content-based recsys design with Redis and DocArray.
130+
- [NVIDIA Recsys with Redis](https://developer.nvidia.com/blog/offline-to-online-feature-storage-for-real-time-recommendation-systems-with-nvidia-merlin/)
138131
- [LabLab AI Redis Tech Page](https://lablab.ai/tech/redis)
139132
- [Storing and querying for embeddings with Redis](https://blog.baeke.info/2023/03/21/storing-and-querying-for-embeddings-with-redis/)
140133
- [Building Intelligent Apps with Redis Vector Similarity Search](https://redis.com/blog/build-intelligent-apps-redis-vector-similarity-search/)
141-
- [RedisDays Keynote](https://www.youtube.com/watch?v=EEIBTEpb2LI) - Video "Infuse Real-Time AI Into Your "Financial Services" Application".
142134
- [RedisDays Trading Signals](https://www.youtube.com/watch?v=_Lrbesg4DhY) - Video "Using AI to Reveal Trading Signals Buried in Corporate Filings".
143135

144-
# Benchmarks
136+
## Benchmarks
145137
- [Benchmarking results for vector databases](https://redis.io/blog/benchmarking-results-for-vector-databases/) - Benchmarking results for vector databases, including Redis and 7 other Vector Database players.
146138
- [ANN Benchmarks](https://ann-benchmarks.com) - Standard ANN Benchmarks site. *Only using single Redis OSS instance/client.*
147139

148-
# Documentation
140+
## Docs
141+
- [Redis Vector Library Docs](https://redisvl.com)
149142
- [Redis Vector Database QuickStart](https://redis.io/docs/get-started/vector-database/)
150143
- [Redis Vector Similarity Docs](https://redis.io/docs/interact/search-and-query/advanced-concepts/vectors/) - Official Redis literature for Vector Similarity Search.
151144
- [Redis-py Search Docs](https://redis.readthedocs.io/en/latest/redismodules.html#redisearch-commands) - Redis-py client library docs for RediSearch.

0 commit comments

Comments
 (0)