|
4 | 4 | import httpx |
5 | 5 | from qdrant_client import QdrantClient |
6 | 6 | from qdrant_client._pydantic_compat import construct |
7 | | -from qdrant_client.http import models as rest |
| 7 | +from qdrant_client import models |
8 | 8 |
|
9 | 9 | from dataset_reader.base_reader import Query |
10 | 10 | from engine.base_client.search import BaseSearcher |
@@ -37,24 +37,35 @@ def init_client(cls, host, distance, connection_params: dict, search_params: dic |
37 | 37 |
|
38 | 38 | @classmethod |
39 | 39 | def search_one(cls, query: Query, top: int) -> List[Tuple[int, float]]: |
| 40 | + |
40 | 41 | # Can query only one till we introduce re-ranking in the benchmarks |
41 | 42 | if query.sparse_vector is None: |
42 | 43 | query_vector = query.vector |
43 | 44 | else: |
44 | 45 | query_vector = construct( |
45 | | - rest.SparseVector, |
| 46 | + models.SparseVector, |
46 | 47 | indices=query.sparse_vector.indices, |
47 | 48 | values=query.sparse_vector.values, |
48 | 49 | ) |
49 | 50 |
|
| 51 | + |
| 52 | + prefetch = cls.search_params.get("prefetch") |
| 53 | + |
| 54 | + if prefetch: |
| 55 | + prefetch = models.Prefetch( |
| 56 | + **prefetch, |
| 57 | + query=query_vector, |
| 58 | + ) |
| 59 | + |
50 | 60 | try: |
51 | 61 | res = cls.client.query_points( |
52 | 62 | using="sparse" if query.sparse_vector else None, |
53 | 63 | collection_name=QDRANT_COLLECTION_NAME, |
| 64 | + prefetch=prefetch, |
54 | 65 | query=query_vector, |
55 | 66 | query_filter=cls.parser.parse(query.meta_conditions), |
56 | 67 | limit=top, |
57 | | - search_params=rest.SearchParams(**cls.search_params.get("config", {})), |
| 68 | + search_params=models.SearchParams(**cls.search_params.get("config", {})), |
58 | 69 | with_payload=cls.search_params.get("with_payload", False), |
59 | 70 | ) |
60 | 71 | except Exception as ex: |
|
0 commit comments