|
| 1 | +# LangChain Integration - Implementation Summary |
| 2 | + |
| 3 | +## Overview |
| 4 | + |
| 5 | +We've implemented a comprehensive LangChain integration for the agent-memory-client that **eliminates the need for manual tool wrapping**. Users can now get LangChain-compatible tools with a single function call instead of manually wrapping each tool with `@tool` decorators. |
| 6 | + |
| 7 | +## What Was Built |
| 8 | + |
| 9 | +### 1. Core Integration Module |
| 10 | + |
| 11 | +**File:** `agent-memory-client/agent_memory_client/integrations/langchain.py` |
| 12 | + |
| 13 | +This module provides: |
| 14 | +- `get_memory_tools()` - Main function to convert memory client tools to LangChain tools |
| 15 | +- Automatic tool function factories for all 9 memory tools |
| 16 | +- Type-safe parameter handling |
| 17 | +- Automatic session/user context injection |
| 18 | +- Error handling and validation |
| 19 | + |
| 20 | +### 2. Available Tools |
| 21 | + |
| 22 | +The integration automatically creates LangChain tools for: |
| 23 | + |
| 24 | +1. **search_memory** - Semantic search in long-term memory |
| 25 | +2. **get_or_create_working_memory** - Get current session state |
| 26 | +3. **add_memory_to_working_memory** - Store new memories |
| 27 | +4. **update_working_memory_data** - Update session data |
| 28 | +5. **get_long_term_memory** - Retrieve specific memory by ID |
| 29 | +6. **create_long_term_memory** - Create long-term memories directly |
| 30 | +7. **edit_long_term_memory** - Update existing memories |
| 31 | +8. **delete_long_term_memories** - Delete memories |
| 32 | +9. **get_current_datetime** - Get current UTC datetime |
| 33 | + |
| 34 | +### 3. Documentation |
| 35 | + |
| 36 | +**Files:** |
| 37 | +- `docs/langchain-integration.md` - Comprehensive integration guide |
| 38 | +- `examples/langchain_integration_example.py` - Working examples |
| 39 | +- Updated `README.md` files with LangChain sections |
| 40 | + |
| 41 | +### 4. Tests |
| 42 | + |
| 43 | +**File:** `agent-memory-client/tests/test_langchain_integration.py` |
| 44 | + |
| 45 | +Comprehensive test suite covering: |
| 46 | +- Tool creation and validation |
| 47 | +- Selective tool filtering |
| 48 | +- Tool execution |
| 49 | +- Error handling |
| 50 | +- Schema validation |
| 51 | + |
| 52 | +## Before vs After |
| 53 | + |
| 54 | +### Before (Manual Wrapping) ❌ |
| 55 | + |
| 56 | +```python |
| 57 | +from langchain_core.tools import tool |
| 58 | + |
| 59 | +@tool |
| 60 | +async def create_long_term_memory(memories: List[dict]) -> str: |
| 61 | + """Store important information in long-term memory.""" |
| 62 | + result = await memory_client.resolve_function_call( |
| 63 | + function_name="create_long_term_memory", |
| 64 | + args={"memories": memories}, |
| 65 | + session_id=session_id, |
| 66 | + user_id=student_id |
| 67 | + ) |
| 68 | + return f"✅ Stored {len(memories)} memory(ies): {result}" |
| 69 | + |
| 70 | +@tool |
| 71 | +async def search_long_term_memory(text: str, limit: int = 5) -> str: |
| 72 | + """Search for relevant memories.""" |
| 73 | + result = await memory_client.resolve_function_call( |
| 74 | + function_name="search_long_term_memory", |
| 75 | + args={"text": text, "limit": limit}, |
| 76 | + session_id=session_id, |
| 77 | + user_id=student_id |
| 78 | + ) |
| 79 | + return str(result) |
| 80 | + |
| 81 | +# ... repeat for every tool |
| 82 | +``` |
| 83 | + |
| 84 | +**Problems:** |
| 85 | +- 20-30 lines of boilerplate per tool |
| 86 | +- Easy to forget session_id/user_id |
| 87 | +- Hard to maintain |
| 88 | +- Error-prone |
| 89 | + |
| 90 | +### After (Automatic Integration) ✅ |
| 91 | + |
| 92 | +```python |
| 93 | +from agent_memory_client.integrations.langchain import get_memory_tools |
| 94 | + |
| 95 | +tools = get_memory_tools( |
| 96 | + memory_client=memory_client, |
| 97 | + session_id=session_id, |
| 98 | + user_id=user_id |
| 99 | +) |
| 100 | + |
| 101 | +# That's it! All 9 tools ready to use |
| 102 | +``` |
| 103 | + |
| 104 | +**Benefits:** |
| 105 | +- 3 lines instead of 200+ |
| 106 | +- Automatic context injection |
| 107 | +- Type-safe |
| 108 | +- Consistent behavior |
| 109 | + |
| 110 | +## Usage Examples |
| 111 | + |
| 112 | +### Basic Usage |
| 113 | + |
| 114 | +```python |
| 115 | +from agent_memory_client import create_memory_client |
| 116 | +from agent_memory_client.integrations.langchain import get_memory_tools |
| 117 | +from langchain.agents import create_tool_calling_agent, AgentExecutor |
| 118 | +from langchain_openai import ChatOpenAI |
| 119 | + |
| 120 | +# Get tools |
| 121 | +memory_client = await create_memory_client("http://localhost:8000") |
| 122 | +tools = get_memory_tools( |
| 123 | + memory_client=memory_client, |
| 124 | + session_id="my_session", |
| 125 | + user_id="alice" |
| 126 | +) |
| 127 | + |
| 128 | +# Use with LangChain |
| 129 | +llm = ChatOpenAI(model="gpt-4o") |
| 130 | +agent = create_tool_calling_agent(llm, tools, prompt) |
| 131 | +executor = AgentExecutor(agent=agent, tools=tools) |
| 132 | +``` |
| 133 | + |
| 134 | +### Selective Tools |
| 135 | + |
| 136 | +```python |
| 137 | +# Get only specific tools |
| 138 | +tools = get_memory_tools( |
| 139 | + memory_client=memory_client, |
| 140 | + session_id="session", |
| 141 | + user_id="user", |
| 142 | + tools=["search_memory", "create_long_term_memory"] |
| 143 | +) |
| 144 | +``` |
| 145 | + |
| 146 | +### Combining with Custom Tools |
| 147 | + |
| 148 | +```python |
| 149 | +from langchain_core.tools import tool |
| 150 | + |
| 151 | +# Get memory tools |
| 152 | +memory_tools = get_memory_tools(client, session_id, user_id) |
| 153 | + |
| 154 | +# Add custom tools |
| 155 | +@tool |
| 156 | +async def calculate(expression: str) -> str: |
| 157 | + """Calculate a math expression.""" |
| 158 | + return str(eval(expression)) |
| 159 | + |
| 160 | +# Combine |
| 161 | +all_tools = memory_tools + [calculate] |
| 162 | +``` |
| 163 | + |
| 164 | +## Key Design Decisions |
| 165 | + |
| 166 | +### 1. Function Factories |
| 167 | + |
| 168 | +Each tool is created by a factory function that captures the client and context: |
| 169 | + |
| 170 | +```python |
| 171 | +def _create_search_memory_func(client: MemoryAPIClient): |
| 172 | + async def search_memory(query: str, ...) -> str: |
| 173 | + result = await client.search_memory_tool(...) |
| 174 | + return result.get("summary", str(result)) |
| 175 | + return search_memory |
| 176 | +``` |
| 177 | + |
| 178 | +This ensures: |
| 179 | +- Proper closure over client and context |
| 180 | +- Type hints are preserved for LangChain's schema generation |
| 181 | +- Each tool is independent |
| 182 | + |
| 183 | +### 2. Automatic Context Injection |
| 184 | + |
| 185 | +Session ID, user ID, and namespace are captured at tool creation time: |
| 186 | + |
| 187 | +```python |
| 188 | +tools = get_memory_tools( |
| 189 | + memory_client=client, |
| 190 | + session_id="session_123", # Injected into all tools |
| 191 | + user_id="alice" # Injected into all tools |
| 192 | +) |
| 193 | +``` |
| 194 | + |
| 195 | +Users don't need to pass these repeatedly. |
| 196 | + |
| 197 | +### 3. Error Handling |
| 198 | + |
| 199 | +Tools return user-friendly error messages: |
| 200 | + |
| 201 | +```python |
| 202 | +if result["success"]: |
| 203 | + return result["formatted_response"] |
| 204 | +else: |
| 205 | + return f"Error: {result.get('error', 'Unknown error')}" |
| 206 | +``` |
| 207 | + |
| 208 | +### 4. Selective Tool Loading |
| 209 | + |
| 210 | +Users can choose which tools to include: |
| 211 | + |
| 212 | +```python |
| 213 | +# All tools |
| 214 | +tools = get_memory_tools(client, session_id, user_id, tools="all") |
| 215 | + |
| 216 | +# Specific tools |
| 217 | +tools = get_memory_tools(client, session_id, user_id, |
| 218 | + tools=["search_memory", "create_long_term_memory"]) |
| 219 | +``` |
| 220 | + |
| 221 | +## Testing |
| 222 | + |
| 223 | +Run the tests: |
| 224 | + |
| 225 | +```bash |
| 226 | +# Install test dependencies |
| 227 | +pip install pytest pytest-asyncio langchain-core |
| 228 | + |
| 229 | +# Run tests |
| 230 | +pytest agent-memory-client/tests/test_langchain_integration.py -v |
| 231 | +``` |
| 232 | + |
| 233 | +## Running the Example |
| 234 | + |
| 235 | +```bash |
| 236 | +# Set environment variables |
| 237 | +export MEMORY_SERVER_URL=http://localhost:8000 |
| 238 | +export OPENAI_API_KEY=your-key-here |
| 239 | + |
| 240 | +# Run the example |
| 241 | +python examples/langchain_integration_example.py |
| 242 | +``` |
| 243 | + |
| 244 | +## Documentation |
| 245 | + |
| 246 | +Full documentation is available at: |
| 247 | +- [LangChain Integration Guide](docs/langchain-integration.md) |
| 248 | +- [Example Code](examples/langchain_integration_example.py) |
| 249 | + |
| 250 | +## Future Enhancements |
| 251 | + |
| 252 | +Potential improvements: |
| 253 | +1. **LangGraph Integration** - Similar automatic conversion for LangGraph |
| 254 | +2. **CrewAI Integration** - Support for CrewAI framework |
| 255 | +3. **Tool Customization** - Allow users to customize tool descriptions |
| 256 | +4. **Streaming Support** - Add streaming responses for long-running operations |
| 257 | +5. **Tool Callbacks** - Add callback hooks for monitoring tool usage |
| 258 | + |
| 259 | +## Impact |
| 260 | + |
| 261 | +This integration: |
| 262 | +- ✅ Eliminates 90%+ of boilerplate code |
| 263 | +- ✅ Reduces errors from manual wrapping |
| 264 | +- ✅ Makes LangChain integration trivial |
| 265 | +- ✅ Provides consistent, type-safe interface |
| 266 | +- ✅ Improves developer experience significantly |
| 267 | + |
| 268 | +## Conclusion |
| 269 | + |
| 270 | +The LangChain integration transforms the developer experience from "tedious manual wrapping" to "one function call and done." This is exactly what users need - a seamless, automatic integration that just works. |
0 commit comments