Skip to content

Commit 0556be8

Browse files
committed
Merge branch 'main' into DOC-4570
2 parents 29d4e44 + 1afd9ec commit 0556be8

File tree

42 files changed

+1241
-449
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

42 files changed

+1241
-449
lines changed

content/commands/json.arrappend/index.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -67,7 +67,7 @@ is JSONPath to specify. Default is root `$`.
6767

6868
## Return value
6969

70-
`JSON.ARRAPEND` returns an [array]({{< relref "develop/reference/protocol-spec#resp-arrays" >}}) of integer replies for each path, the array's new size, or `nil`, if the matching JSON value is not an array.
70+
`JSON.ARRAPPEND` returns an [array]({{< relref "develop/reference/protocol-spec#resp-arrays" >}}) of integer replies for each path, the array's new size, or `nil`, if the matching JSON value is not an array.
7171
For more information about replies, see [Redis serialization protocol specification]({{< relref "/develop/reference/protocol-spec" >}}).
7272

7373
## Examples
@@ -82,7 +82,7 @@ redis> JSON.SET item:1 $ '{"name":"Noise-cancelling Bluetooth headphones","descr
8282
OK
8383
{{< / highlight >}}
8484

85-
Add color `blue` to the end of the `colors` array. `JSON.ARRAPEND` returns the array's new size.
85+
Add color `blue` to the end of the `colors` array. `JSON.ARRAPPEND` returns the array's new size.
8686

8787
{{< highlight bash >}}
8888
redis> JSON.ARRAPPEND item:1 $.colors '"blue"'

content/commands/json.debug-memory/index.md

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -72,7 +72,7 @@ Get the values' memory usage in bytes.
7272

7373
{{< highlight bash >}}
7474
redis> JSON.DEBUG MEMORY item:2
75-
(integer) 253
75+
(integer) 573
7676
{{< / highlight >}}
7777
</details>
7878

@@ -84,4 +84,3 @@ redis> JSON.DEBUG MEMORY item:2
8484

8585
* [RedisJSON]({{< relref "/develop/data-types/json/" >}})
8686
* [Index and search JSON documents]({{< relref "/develop/interact/search-and-query/indexing/" >}})
87-

content/develop/ai/index.md

Lines changed: 21 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -44,7 +44,7 @@ Learn to perform vector search and use gateways and semantic caching in your AI/
4444

4545
## Quickstarts
4646

47-
Quickstarts or recipes are useful when you are trying to build specific functionality. For example, you might want to do RAG with LangChain or set up LLM memory for you AI agent. Get started with the following Redis Python notebooks.
47+
Quickstarts or recipes are useful when you are trying to build specific functionality. For example, you might want to do RAG with LangChain or set up LLM memory for your AI agent. Get started with the following Redis Python notebooks.
4848

4949
* [The place to start if you are brand new to Redis](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/redis-intro/00_redis_intro.ipynb)
5050

@@ -53,6 +53,7 @@ Vector search retrieves results based on the similarity of high-dimensional nume
5353
* [Implementing hybrid search with Redis](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/02_hybrid_search.ipynb)
5454
* [Vector search with Redis Python client](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/00_redispy.ipynb)
5555
* [Vector search with Redis Vector Library](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/01_redisvl.ipynb)
56+
* [Shows how to convert a float 32 index to float16 or integer data types](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/03_dtype_support.ipynb)
5657

5758
#### RAG
5859
Retrieval Augmented Generation (aka RAG) is a technique to enhance the ability of an LLM to respond to user queries. The retrieval part of RAG is supported by a vector database, which can return semantically relevant results to a user’s query, serving as contextual information to augment the generative capabilities of an LLM.
@@ -65,12 +66,14 @@ Retrieval Augmented Generation (aka RAG) is a technique to enhance the ability o
6566
* [Vector search with Azure](https://techcommunity.microsoft.com/blog/azuredevcommunityblog/vector-similarity-search-with-azure-cache-for-redis-enterprise/3822059)
6667
* [RAG with Spring AI](https://redis.io/blog/building-a-rag-application-with-redis-and-spring-ai/)
6768
* [RAG with Vertex AI](https://github.com/redis-developer/gcp-redis-llm-stack/tree/main)
68-
* [Notebook for additional tips and techniques to improve RAG quality](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/04_advanced_redisvl.ipynb)
69+
* [Notebook for additional tips and techniques to improve RAG quality](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/04_advanced_redisvl.ipynb)
70+
* [Implement a simple RBAC policy with vector search using Redis](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/07_user_role_based_rag.ipynb)
6971

7072
#### Agents
7173
AI agents can act autonomously to plan and execute tasks for the user.
7274
* [Notebook to get started with LangGraph and agents](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/agents/00_langgraph_redis_agentic_rag.ipynb)
7375
* [Build a collaborative movie recommendation system using Redis for data storage, CrewAI for agent-based task execution, and LangGraph for workflow management.](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/agents/01_crewai_langgraph_redis.ipynb)
76+
* [Full-Featured Agent Architecture](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/agents/02_full_featured_agent.ipynb)
7477

7578
#### LLM memory
7679
LLMs are stateless. To maintain context within a conversation chat sessions must be stored and resent to the LLM. Redis manages the storage and retrieval of chat sessions to maintain context and conversational relevance.
@@ -81,14 +84,24 @@ LLMs are stateless. To maintain context within a conversation chat sessions must
8184
An estimated 31% of LLM queries are potentially redundant. Redis enables semantic caching to help cut down on LLM costs quickly.
8285
* [Build a semantic cache using the Doc2Cache framework and Llama3.1](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-cache/doc2cache_llama3_1.ipynb)
8386
* [Build a semantic cache with Redis and Google Gemini](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-cache/semantic_caching_gemini.ipynb)
87+
* [Optimize semantic cache threshold with RedisVL](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-cache/02_semantic_cache_optimization.ipynb)
88+
89+
#### Semantic routing
90+
Routing is a simple and effective way of preventing misuses with your AI application or for creating branching logic between data sources etc.
91+
* [Simple examples of how to build an allow/block list router in addition to a multi-topic router](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-router/00_semantic_routing.ipynb)
92+
* [Use RouterThresholdOptimizer from redisvl to setup best router config](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-router/01_routing_optimization.ipynb)
8493

8594
#### Computer vision
8695
Build a facial recognition system using the Facenet embedding model and RedisVL.
8796
* [Facial recognition](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/computer-vision/00_facial_recognition_facenet.ipynb)
8897

8998
#### Recommendation systems
9099
* [Intro content filtering example with redisvl](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/recommendation-systems/00_content_filtering.ipynb)
91-
* [Intro collaborative filtering example with redisvl](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/recommendation-systems/01_collaborative_filtering.ipynb)
100+
* [Intro collaborative filtering example with redisvl](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/recommendation-systems/01_collaborative_filtering.ipynb)
101+
* [Intro deep learning two tower example with redisvl](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/recommendation-systems/02_two_towers.ipynb)
102+
103+
#### Feature store
104+
* [Credit scoring system using Feast with Redis as the online store](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/feature-store/00_feast_credit_score.ipynb)
92105

93106
## Tutorials
94107
Need a deeper-dive through different use cases and topics?
@@ -97,10 +110,12 @@ Need a deeper-dive through different use cases and topics?
97110
* [Agentic RAG](https://github.com/redis-developer/agentic-rag) - A tutorial focused on agentic RAG with LlamaIndex and Amazon Bedrock
98111
* [RAG on Vertex AI](https://github.com/redis-developer/gcp-redis-llm-stack/tree/main) - A RAG tutorial featuring Redis with Vertex AI
99112
* [RAG workbench](https://github.com/redis-developer/redis-rag-workbench) - A development playground for exploring RAG techniques with Redis
113+
* [ArXiv Chat](https://github.com/redis-developer/ArxivChatGuru) - Streamlit demo of RAG over ArXiv documents with Redis & OpenAI
100114

101-
#### Recommendation system
115+
#### Recommendations and search
102116
* [Recommendation systems w/ NVIDIA Merlin & Redis](https://github.com/redis-developer/redis-nvidia-recsys) - Three examples, each escalating in complexity, showcasing the process of building a realtime recsys with NVIDIA and Redis
103117
* [Redis product search](https://github.com/redis-developer/redis-product-search) - Build a real-time product search engine using features like full-text search, vector similarity, and real-time data updates
118+
* [ArXiv Search](https://github.com/redis-developer/redis-arxiv-search) - Full stack implementation of Redis with React FE
104119

105120
## Ecosystem integrations
106121

@@ -113,6 +128,8 @@ Need a deeper-dive through different use cases and topics?
113128
* [Deploy GenAI apps faster with Redis and NVIDIA NIM](https://redis.io/blog/use-redis-with-nvidia-nim-to-deploy-genai-apps-faster/)
114129
* [Building LLM Applications with Kernel Memory and Redis](https://redis.io/blog/building-llm-applications-with-kernel-memory-and-redis/)
115130
* [DocArray integration of Redis as a vector database by Jina AI](https://docs.docarray.org/user_guide/storing/index_redis/)
131+
* [Semantic Kernel: A popular library by Microsoft to integrate LLMs with plugins](https://learn.microsoft.com/en-us/semantic-kernel/concepts/vector-store-connectors/out-of-the-box-connectors/redis-connector?pivots=programming-language-csharp)
132+
* [LiteLLM integration](https://docs.litellm.ai/docs/caching/all_caches#initialize-cache---in-memory-redis-s3-bucket-redis-semantic-disk-cache-qdrant-semantic)
116133

117134
## Benchmarks
118135
See how we stack up against the competition.

content/develop/clients/php/connect.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ categories:
1212
description: Connect your PHP application to a Redis database
1313
linkTitle: Connect
1414
title: Connect to the server
15-
weight: 2
15+
weight: 10
1616
---
1717

1818
## Basic connection

content/develop/clients/php/queryjson.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ categories:
1212
description: Learn how to use the Redis query engine with JSON
1313
linkTitle: Index and query JSON
1414
title: Example - Index and query JSON documents
15-
weight: 2
15+
weight: 20
1616
---
1717

1818
This example shows how to index and query Redis JSON data using `predis`.

0 commit comments

Comments
 (0)