|
3 | 3 | from redis.exceptions import RedisError
|
4 | 4 | from common.server import mcp
|
5 | 5 | from redis.commands.search.query import Query
|
| 6 | +from redis.commands.search.field import VectorField |
| 7 | +from redis.commands.search.indexDefinition import IndexDefinition |
| 8 | +import numpy as np |
6 | 9 |
|
7 | 10 |
|
8 | 11 | @mcp.tool()
|
@@ -49,3 +52,84 @@ async def get_indexed_keys_number(index_name: str) -> str:
|
49 | 52 | except RedisError as e:
|
50 | 53 | return f"Error retrieving number of keys: {str(e)}"
|
51 | 54 |
|
| 55 | + |
| 56 | +@mcp.tool() |
| 57 | +async def create_vector_index_hash(index_name: str, |
| 58 | + prefix: str = "doc:", |
| 59 | + vector_field: str = "vector", |
| 60 | + dim: int = 1536, |
| 61 | + distance_metric: str = "COSINE") -> str: |
| 62 | + """ |
| 63 | + Create a Redis 8 vector similarity index using HNSW on a Redis hash. |
| 64 | +
|
| 65 | + This function sets up a Redis index for approximate nearest neighbor (ANN) |
| 66 | + search using the HNSW algorithm and float32 vector embeddings. |
| 67 | +
|
| 68 | + Args: |
| 69 | + index_name: The name of the Redis index to create. |
| 70 | + prefix: The key prefix used to identify documents to index (e.g., 'doc:'). |
| 71 | + vector_field: The name of the vector field to be indexed for similarity search. |
| 72 | + dim: The dimensionality of the vectors stored under the vector_field. |
| 73 | + distance_metric: The distance function to use (e.g., 'COSINE', 'L2', 'IP'). |
| 74 | +
|
| 75 | + Returns: |
| 76 | + A string indicating whether the index was created successfully or an error message. |
| 77 | + """ |
| 78 | + try: |
| 79 | + r = RedisConnectionManager.get_connection() |
| 80 | + |
| 81 | + index_def = IndexDefinition(prefix=[prefix]) |
| 82 | + schema = ( |
| 83 | + VectorField( |
| 84 | + vector_field, |
| 85 | + "HNSW", |
| 86 | + { |
| 87 | + "TYPE": "FLOAT32", |
| 88 | + "DIM": dim, |
| 89 | + "DISTANCE_METRIC": distance_metric |
| 90 | + } |
| 91 | + ) |
| 92 | + ) |
| 93 | + |
| 94 | + r.ft(index_name).create_index([schema], definition=index_def) |
| 95 | + return f"Index '{index_name}' created successfully." |
| 96 | + except RedisError as e: |
| 97 | + return f"Error creating index '{index_name}': {str(e)}" |
| 98 | + |
| 99 | + |
| 100 | +@mcp.tool() |
| 101 | +async def vector_search_hash(index_name: str, |
| 102 | + query_vector: list, |
| 103 | + vector_field: str = "vector", |
| 104 | + k: int = 5, |
| 105 | + return_fields: list = None) -> list: |
| 106 | + """ |
| 107 | + Perform a KNN vector similarity search using Redis 8 or later version on vectors stored in hash data structures. |
| 108 | +
|
| 109 | + Args: |
| 110 | + index_name: Name of the Redis index. |
| 111 | + vector_field: Name of the indexed vector field. |
| 112 | + query_vector: List of floats to use as the query vector. |
| 113 | + k: Number of nearest neighbors to return. |
| 114 | + return_fields: List of fields to return (optional). |
| 115 | +
|
| 116 | + Returns: |
| 117 | + A list of matched documents or an error message. |
| 118 | + """ |
| 119 | + try: |
| 120 | + r = RedisConnectionManager.get_connection() |
| 121 | + |
| 122 | + # Convert query vector to float32 binary blob |
| 123 | + vector_blob = np.array(query_vector, dtype=np.float32).tobytes() |
| 124 | + |
| 125 | + # Build the KNN query |
| 126 | + base_query = f"*=>[KNN {k} @{vector_field} $vec_param AS score]" |
| 127 | + query = Query(base_query).sort_by("score").paging(0, k).return_fields("id", "score", *return_fields or []).dialect(2) |
| 128 | + |
| 129 | + # Perform the search with vector parameter |
| 130 | + results = r.ft(index_name).search(query, query_params={"vec_param": vector_blob}) |
| 131 | + |
| 132 | + # Format and return the results |
| 133 | + return [doc.__dict__ for doc in results.docs] |
| 134 | + except RedisError as e: |
| 135 | + return f"Error performing vector search on index '{index_name}': {str(e)}" |
0 commit comments