You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: modules/components/pages/processors/cohere_embeddings.adoc
+20-5Lines changed: 20 additions & 5 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -17,14 +17,15 @@ Introduced in version 4.37.0.
17
17
endif::[]
18
18
19
19
```yml
20
-
# Config fields, showing default values
20
+
# Configuration fields, showing default values
21
21
label: ""
22
22
cohere_embeddings:
23
23
base_url: https://api.cohere.com
24
24
auth_token: "" # No default (required)
25
25
model: embed-english-v3.0 # No default (required)
26
26
text_mapping: "" # No default (optional)
27
-
dimensions: search_document
27
+
input_type: search_document
28
+
dimensions: "" # No default (optional)
28
29
```
29
30
30
31
This processor sends text strings to your chosen large language model (LLM), which generates vector embeddings for them using the Cohere API. By default, the processor submits the entire payload of each message as a string, unless you use the `text_mapping` field to customize it.
@@ -101,7 +102,7 @@ The text you want to generate a vector embedding for. By default, the processor
101
102
102
103
*Type*: `string`
103
104
104
-
=== `dimensions`
105
+
=== `input_type`
105
106
106
107
The type of text input passed to the model.
107
108
@@ -110,15 +111,29 @@ The type of text input passed to the model.
110
111
*Default*: `search_document`
111
112
112
113
|===
113
-
| Option | Summary
114
+
| Option | Description
115
+
114
116
| `classification`
115
117
| For embeddings passed through a text classifier.
118
+
116
119
| `clustering`
117
120
| For embeddings run through a clustering algorithm.
121
+
118
122
| `search_document`
119
-
| For embeddings stored in a vector database for search use cases.
123
+
| For embeddings stored in a vector database and used for search use cases.
124
+
120
125
| `search_query`
121
126
| For embeddings of search queries run against a vector database to find relevant documents.
122
127
|===
123
128
129
+
=== `dimensions`
130
+
131
+
The number of dimensions (numerical values) in each vector embedding generated by this processor. This parameter only supports https://docs.cohere.com/v2/docs/embeddings[`embed-v4.0`^] and newer models.
0 commit comments