|
| 1 | +Structured Parameter |
| 2 | +==================== |
| 3 | + |
| 4 | +The main idea of `HyperParameter` is to organize the parameters and parameter accesses into a tree structure, by which we can refer to each parameter with a unique name and identify each access to the parameters. Then we can modify each parameter and control the access to the parameters. |
| 5 | + |
| 6 | +Nested Parameters and Parameter Path |
| 7 | +------------------------------------ |
| 8 | + |
| 9 | +The parameters are stored in a nested dict, a very common solution for python programs, and can be easily serialized into JSON or YAML format. For example: |
| 10 | + |
| 11 | +```python |
| 12 | +cfg = { |
| 13 | + "param1": 1, # unique name: param1 |
| 14 | + "obj2": { |
| 15 | + "param3": "value4", # unique name: obj2.param3 |
| 16 | + "param5": 6, # unique name: obj2.param5 |
| 17 | + }, |
| 18 | +} |
| 19 | +``` |
| 20 | + |
| 21 | +We can directly refer to the value `value4` by `cfg["obj2"]["param3"]`. But we also need to check whether the parameter is missing from the cfg, and handle the default value. |
| 22 | + |
| 23 | +`HyperParameter` offers a tiny DSL to access the parameters. The DSL syntax is very similar to `jsonpath`, but compatible with python syntax so that the interpreter and code editor can check for syntax errors. (I found this feature saves me a lot of time.). The first thing to use the DSL is converting the cfg into `HyperParameter`, and then we can use the DSL: |
| 24 | + |
| 25 | +```python |
| 26 | +# convert a nested dict into HyperParameter |
| 27 | +hp = HyperParameter(**cfg) |
| 28 | + |
| 29 | +# or create the HyperParameter object from scratch |
| 30 | +hp = HyperParameter(param1=1, obj2={"param3": "value4"}) |
| 31 | + |
| 32 | +# the DSL for access the parameter |
| 33 | +param = hp().obj2.param3(default="undefined") |
| 34 | +``` |
| 35 | + |
| 36 | +`hp().obj2.param3(default="undefined")` is the inline DSL for reading parameter from `HyperParameter` object. It looks like a `jsonpath` expression but has support for default values. |
| 37 | + |
| 38 | +Best Practice for Structure Parameters with Parameter Path |
| 39 | +----------------------------------------------- |
| 40 | + |
| 41 | +### A Quick Example of Recommendation Model |
| 42 | + |
| 43 | +Suppose we are building a wide&deep model with `keras`. |
| 44 | + |
| 45 | +```python |
| 46 | +class WideAndDeepModel(keras.Model): |
| 47 | + def __init__(self, units=30, activation="relu", **kwargs): |
| 48 | + super().__init__(**kwargs) |
| 49 | + self.hidden1 = keras.layers.Dense(units, activation=activation) |
| 50 | + self.hidden2 = keras.layers.Dense(units, activation=activation) |
| 51 | + self.main_output = keras.layers.Dense(1) |
| 52 | + self.aux_output = keras.layers.Dense(1) |
| 53 | + |
| 54 | + def call(self, inputs): |
| 55 | + input_A , input_B = inputs |
| 56 | + hidden1 = self.hidden1(input_B) |
| 57 | + hidden2 = self.hidden2(hidden1) |
| 58 | + concat = keras.layers.concatenate([input_A, hidden2]) |
| 59 | + main_output = self.main_output()(concat) |
| 60 | + aux_output = self.aux_output()(hidden2) |
| 61 | + return main_outputi, aux_output |
| 62 | +``` |
| 63 | + |
| 64 | +The model is straightforward and does not support many parameters. If we want to add batch normalization, dropout, and leaky-relu tricks to the model, we have to modify the code as follows: |
| 65 | + |
| 66 | +```python |
| 67 | +class WideAndDeepModel(keras.Model): |
| 68 | + def __init__(self, |
| 69 | + units=[30, 30, 30], |
| 70 | + activation="relu", |
| 71 | + use_bn=False, |
| 72 | + bn_momentum=0.99, |
| 73 | + bn_epsilon=0.001, |
| 74 | + bn_center=True, |
| 75 | + bn_scale=True, |
| 76 | + bn_beta_initializer="zeros", |
| 77 | + bn_gamma_initializer="ones", |
| 78 | + bn_moving_mean_initializer="zeros", |
| 79 | + bn_moving_variance_initializer="ones", |
| 80 | + use_dropout=False, |
| 81 | + ...): |
| 82 | + |
| 83 | + ... |
| 84 | + self.bn1 = keras.layers.BatchNormalization( |
| 85 | + momentum=bn_momentum, |
| 86 | + epsilon=bn_epsilon, |
| 87 | + center=bn_center, |
| 88 | + scale=bn_scale, |
| 89 | + beta_initializer=bn_beta_initializer, |
| 90 | + gamma_initializer=bn_gamma_initializer, |
| 91 | + ..., |
| 92 | + ) |
| 93 | +``` |
| 94 | + |
| 95 | +The code becomes too complicated, having dozens of parameters to handle, most of which are not used. |
| 96 | + |
| 97 | +### A Fast Trial of Structured Parameter |
| 98 | + |
| 99 | +We can simplify the code with `auto_param`, which automatically converts the parameters into a parameter tree. And then, we can specify the parameters by name: |
| 100 | + |
| 101 | +```python |
| 102 | +# add parameter support for custom functions with a decorator |
| 103 | +@auto_param("myns.rec.rank.dropout") |
| 104 | +class dropout: |
| 105 | + def __init__(self, ratio=0.5): |
| 106 | + ... |
| 107 | + |
| 108 | +# add parameter support for library functions |
| 109 | +wrapped_bn = auto_param("myns.rec.rank.bn")(keras.layers.BatchNormalization) |
| 110 | +``` |
| 111 | + |
| 112 | +`myns.rec.rank` is the namespace for my project, and `myns.rec.rank.dropout` refers to the function defined in our code. We can refer to the keyword arguments (e.g. `ratio=0.5`) with the path `hp().myns.rec.rank.dropout`. |
| 113 | + |
| 114 | +After making the building block configurable, we can simplify the model: |
| 115 | +```python |
| 116 | +class WideAndDeepModel(keras.Model): |
| 117 | + def __init__(self, |
| 118 | + units=[30, 30, 30], |
| 119 | + activation="relu", |
| 120 | + ...): |
| 121 | + |
| 122 | + ... |
| 123 | + self.bn1 = wrapped_bn() |
| 124 | + self.dropout1 = dropout() |
| 125 | +``` |
| 126 | +And we can change the parameters of the `BN` layers with `param_scope`: |
| 127 | + |
| 128 | +```python |
| 129 | +with param_scope(**{ |
| 130 | + "myns.rec.rank.dropout.ratio": 0.6, |
| 131 | + "myns.rec.rank.bn.center": False, |
| 132 | + ... |
| 133 | +}): |
| 134 | + model = WideAndDeepModel() |
| 135 | +``` |
| 136 | + |
| 137 | +Or read the parameters from a JSON file: |
| 138 | + |
| 139 | +```python |
| 140 | +with open("model.cfg.json") as f: |
| 141 | + cfg = json.load(f) |
| 142 | +with param_scope(**cfg): |
| 143 | + model = WideAndDeepModel() |
| 144 | +``` |
| 145 | + |
| 146 | +### Fine-grained Control of Structured Parameters |
| 147 | + |
| 148 | +In the last section, we have introduced how to structure the parameters with `auto_param` and modify them with `param_scope` by their path. |
| 149 | +However, we may also need to access the same parameter in different places in our code, e.g., different layers in a DNN model. |
| 150 | + |
| 151 | +In such situation, we can break our code into named scopes. And then, we can identify each access to the parameters and set a value for each access. |
| 152 | + |
| 153 | +To add named scopes to our code, we can use `param_scope`: |
| 154 | + |
| 155 | +```python |
| 156 | +class WideAndDeepModel(keras.Model): |
| 157 | + def __init__(self, |
| 158 | + units=[30, 30, 30], |
| 159 | + activation="relu", |
| 160 | + ...): |
| 161 | + |
| 162 | + ... |
| 163 | + with param_scope["layer1"](): |
| 164 | + self.bn1 = wrapped_bn() |
| 165 | + self.dropout1 = dropout() |
| 166 | + with param_scope["layer2"](): |
| 167 | + self.bn2 = wrapped_bn() |
| 168 | + self.dropout2 = dropout() |
| 169 | + ... |
| 170 | + |
| 171 | +with param_scope["wdmodel"](): |
| 172 | + model = WideAndDeepModel() |
| 173 | +``` |
| 174 | + |
| 175 | +`param_scope["layer1"]` creates a named scope called `layer1`. Since the scope is created inside another named scope `param_scope["wdmodel"]`, its full path should be `wdmodel.layer1`. We can specify different values of a parameter according to its path. For example: |
| 176 | + |
| 177 | +```python |
| 178 | +with param_scope["wdmodel"](**{ |
| 179 | + "myns.rec.rank.dropout.ratio@wdmodel#layer1": 0.6, |
| 180 | + "myns.rec.rank.dropout.ratio@wdmodel#layer2": 0.7, |
| 181 | +}): |
| 182 | + model = WideAndDeepModel() |
| 183 | +``` |
| 184 | + |
| 185 | +With the above code, we get a drop ratio of 0.6 for `layer1` and 0.7 for `layer2`. |
0 commit comments