Skip to content

Commit 971cdf1

Browse files
committed
update examples
1 parent 89a1834 commit 971cdf1

File tree

3 files changed

+7
-10
lines changed

3 files changed

+7
-10
lines changed

examples/mnist/main_with_hp.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -96,7 +96,7 @@ def main():
9696
help='how many batches to wait before logging training status')
9797
parser.add_argument('--save-model', action='store_true', default=False,
9898
help='For Saving the current Model')
99-
parser.add_argument('-D', '--define', nargs='*', default=[])
99+
parser.add_argument('-D', '--define', nargs='*', default=[], action="extend")
100100
args = parser.parse_args()
101101
use_cuda = not args.no_cuda and torch.cuda.is_available()
102102

examples/sparse_lr/example_2.py

Lines changed: 3 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -23,14 +23,9 @@ def run(args):
2323
# create cmd line arguments parser
2424
import argparse
2525
parser = argparse.ArgumentParser('example')
26-
parser.add_argument(
27-
'-D',
28-
'--define',
29-
nargs='*',
30-
default=[],
31-
help=
32-
'define a parameter `param_name=param_value`, supported parameter list: \n\n {}'
33-
.format('\n '.join(Tracker.all())))
26+
parser.add_argument('-D', '--define', nargs='*', default=[], action="extend",
27+
help='define a parameter `param_name=param_value`, supported parameter list: \n\n {}'
28+
.format('\n '.join(Tracker.all())))
3429
args = parser.parse_args()
3530
run(args)
3631

examples/sparse_lr/model.py

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,9 +5,11 @@
55
from hyperparameter import auto_param, param_scope
66

77

8+
MyLogisticRegression = auto_param(LogisticRegression)
9+
810
@auto_param
911
def sparse_lr_plot(X, y, learning_rate=0.01, penalty='l1', C=0.01, tol=0.01):
10-
LR = LogisticRegression(C=C, penalty=penalty, tol=tol, solver='saga')
12+
LR = MyLogisticRegression(C=C, penalty=penalty, tol=tol, solver='saga')
1113

1214
LR.fit(X, y)
1315
coef = LR.coef_.ravel()

0 commit comments

Comments
 (0)