|
| 1 | +import torch |
| 2 | +import torch.nn as nn |
| 3 | +import torch.nn.functional as F |
| 4 | +import torch.optim as optim |
| 5 | +from torchvision import datasets, transforms |
| 6 | +from torch.optim.lr_scheduler import StepLR |
| 7 | +import optuna |
| 8 | + |
| 9 | +from hyperparameter import param_scope, auto_param, lazy_dispatch |
| 10 | + |
| 11 | + |
| 12 | +@auto_param |
| 13 | +class Backbone(nn.Module): |
| 14 | + def __init__( |
| 15 | + self, |
| 16 | + chn1=32, |
| 17 | + chn2=64, |
| 18 | + ker1_size=3, |
| 19 | + ker2_size=3, |
| 20 | + activation="relu", |
| 21 | + ) -> None: |
| 22 | + super().__init__() |
| 23 | + self.conv1 = nn.Conv2d(1, chn1, ker1_size, 1) |
| 24 | + self.conv2 = nn.Conv2d(chn1, chn2, ker2_size, 1) |
| 25 | + self.activation = getattr(F, activation) |
| 26 | + |
| 27 | + def forward(self, x): |
| 28 | + x = self.conv1(x) |
| 29 | + x = self.activation(x) |
| 30 | + x = self.conv2(x) |
| 31 | + x = self.activation(x) |
| 32 | + x = F.max_pool2d(x, 2) |
| 33 | + return torch.flatten(x, 1) |
| 34 | + |
| 35 | + |
| 36 | +@auto_param |
| 37 | +class Head(nn.Module): |
| 38 | + def __init__( |
| 39 | + self, |
| 40 | + fc1=128, |
| 41 | + fc2=128, |
| 42 | + activation="relu", |
| 43 | + dropout=0.25, |
| 44 | + ) -> None: |
| 45 | + super().__init__() |
| 46 | + self.fc1 = nn.LazyLinear(fc1) |
| 47 | + self.fc2 = nn.LazyLinear(fc2) |
| 48 | + self.dropout1 = nn.Dropout(dropout) |
| 49 | + self.dropout2 = nn.Dropout(dropout) |
| 50 | + self.activation = getattr(F, activation) |
| 51 | + |
| 52 | + def forward(self, x): |
| 53 | + x = self.dropout1(x) |
| 54 | + x = self.fc1(x) |
| 55 | + x = self.activation(x) |
| 56 | + x = self.dropout2(x) |
| 57 | + return self.fc2(x) |
| 58 | + |
| 59 | + |
| 60 | +class Net(nn.Module): |
| 61 | + def __init__(self) -> None: |
| 62 | + super().__init__() |
| 63 | + self.backbone = Backbone() |
| 64 | + self.head = Head() |
| 65 | + |
| 66 | + def forward(self, x): |
| 67 | + x = self.backbone(x) |
| 68 | + x = self.head(x) |
| 69 | + return F.log_softmax(x, dim=1) |
| 70 | + |
| 71 | + |
| 72 | +def train(model, train_loader, optimizer): |
| 73 | + model.train() |
| 74 | + for batch_idx, (data, target) in enumerate(train_loader): |
| 75 | + optimizer.zero_grad() |
| 76 | + output = model(data) |
| 77 | + loss = F.nll_loss(output, target) |
| 78 | + loss.backward() |
| 79 | + optimizer.step() |
| 80 | + if batch_idx % 100 == 0: |
| 81 | + print( |
| 82 | + "Train Epoch: [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format( |
| 83 | + batch_idx * len(data), |
| 84 | + len(train_loader.dataset), |
| 85 | + 100.0 * batch_idx / len(train_loader), |
| 86 | + loss.item(), |
| 87 | + ) |
| 88 | + ) |
| 89 | + |
| 90 | + |
| 91 | +def test(model, test_loader): |
| 92 | + model.eval() |
| 93 | + test_loss = 0 |
| 94 | + correct = 0 |
| 95 | + with torch.no_grad(): |
| 96 | + for data, target in test_loader: |
| 97 | + output = model(data) |
| 98 | + test_loss += F.nll_loss( |
| 99 | + output, target, reduction="sum" |
| 100 | + ).item() # sum up batch loss |
| 101 | + pred = output.argmax( |
| 102 | + dim=1, keepdim=True |
| 103 | + ) # get the index of the max log-probability |
| 104 | + correct += pred.eq(target.view_as(pred)).sum().item() |
| 105 | + test_loss /= len(test_loader.dataset) |
| 106 | + print( |
| 107 | + "\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n".format( |
| 108 | + test_loss, |
| 109 | + correct, |
| 110 | + len(test_loader.dataset), |
| 111 | + 100.0 * correct / len(test_loader.dataset), |
| 112 | + ) |
| 113 | + ) |
| 114 | + return test_loss / len(test_loader.dataset) |
| 115 | + |
| 116 | + |
| 117 | +@auto_param |
| 118 | +def train_model(batch_size=128, epochs=1, lr=1.0, momentum=0.9, step_lr_gamma=0.7): |
| 119 | + torch.manual_seed(0) |
| 120 | + transform = transforms.Compose( |
| 121 | + [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] |
| 122 | + ) |
| 123 | + dataset1 = datasets.MNIST("../data", train=True, download=True, transform=transform) |
| 124 | + dataset2 = datasets.MNIST("../data", train=False, transform=transform) |
| 125 | + train_loader = torch.utils.data.DataLoader(dataset1, batch_size=batch_size) |
| 126 | + test_loader = torch.utils.data.DataLoader(dataset2, batch_size=batch_size) |
| 127 | + |
| 128 | + model = Net() |
| 129 | + optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum) |
| 130 | + |
| 131 | + scheduler = StepLR(optimizer, step_size=1, gamma=step_lr_gamma) |
| 132 | + for epoch in range(1, epochs + 1): |
| 133 | + train(model, train_loader, optimizer) |
| 134 | + scheduler.step() |
| 135 | + return test(model, test_loader) |
| 136 | + |
| 137 | + |
| 138 | +def wrapper(trial): |
| 139 | + trial = lazy_dispatch(trial) |
| 140 | + with param_scope( |
| 141 | + **{ |
| 142 | + "train_model.lr": trial.suggest_categorical("train_model.lr", [0.1, 0.01]), |
| 143 | + "train_model.momentum": trial.suggest_categorical( |
| 144 | + "train_model.momentum", [0.9, 0.85] |
| 145 | + ), |
| 146 | + "Backbone.ker1_size": trial.suggest_categorical( |
| 147 | + "Backbone.ker1_size", [3, 5] |
| 148 | + ), |
| 149 | + "Head.dropout": trial.suggest_categorical("Head.dropout", [0.25, 0.15]), |
| 150 | + } |
| 151 | + ): |
| 152 | + return train_model() |
| 153 | + |
| 154 | + |
| 155 | +study = optuna.create_study() |
| 156 | +study.optimize(wrapper, n_trials=10) |
| 157 | + |
| 158 | +optuna.visualization.plot_contour(study) |
| 159 | +optuna.visualization.plot_parallel_coordinate(study) |
0 commit comments