|
1 | 1 | from pathlib import Path
|
2 | 2 |
|
| 3 | +import torch |
| 4 | + |
| 5 | +from robot_nav.SIM_ENV.marl_sim import MARL_SIM |
3 | 6 | from robot_nav.models.RCPG.RCPG import RCPG
|
4 | 7 | from robot_nav.models.TD3.TD3 import TD3
|
5 | 8 | from robot_nav.models.CNNTD3.CNNTD3 import CNNTD3
|
6 | 9 | from robot_nav.models.SAC.SAC import SAC
|
7 | 10 | from robot_nav.models.DDPG.DDPG import DDPG
|
8 | 11 | from robot_nav.utils import get_buffer
|
9 | 12 | from robot_nav.SIM_ENV.sim import SIM
|
| 13 | +from robot_nav.models.MARL.marlTD3 import TD3 as marlTD3 |
10 | 14 | import pytest
|
11 | 15 |
|
12 | 16 | PROJECT_ROOT = Path(__file__).resolve().parents[1]
|
@@ -91,3 +95,56 @@ def test_max_bound_models(model, state_dim):
|
91 | 95 | iterations=2,
|
92 | 96 | batch_size=8,
|
93 | 97 | )
|
| 98 | + |
| 99 | + |
| 100 | +def test_marl_models(): |
| 101 | + sim = MARL_SIM("/tests/test_marl_world.yaml", disable_plotting=True) |
| 102 | + test_model = marlTD3( |
| 103 | + state_dim=11, |
| 104 | + action_dim=2, |
| 105 | + max_action=1, |
| 106 | + num_robots=sim.num_robots, |
| 107 | + device="cpu", |
| 108 | + save_every=0, |
| 109 | + load_model=False, |
| 110 | + ) # instantiate a model |
| 111 | + |
| 112 | + replay_buffer = get_buffer( |
| 113 | + model=test_model, |
| 114 | + sim=sim, |
| 115 | + load_saved_buffer=False, |
| 116 | + pretrain=False, |
| 117 | + pretraining_iterations=0, |
| 118 | + training_iterations=0, |
| 119 | + batch_size=0, |
| 120 | + buffer_size=100, |
| 121 | + ) |
| 122 | + |
| 123 | + for _ in range(10): |
| 124 | + connections = torch.tensor( |
| 125 | + [[0.0 for _ in range(sim.num_robots - 1)] for _ in range(3)] |
| 126 | + ) |
| 127 | + ( |
| 128 | + poses, |
| 129 | + distance, |
| 130 | + cos, |
| 131 | + sin, |
| 132 | + collision, |
| 133 | + goal, |
| 134 | + a, |
| 135 | + reward, |
| 136 | + positions, |
| 137 | + goal_positions, |
| 138 | + ) = sim.step([[0, 0] for _ in range(sim.num_robots)], connections) |
| 139 | + state, terminal = test_model.prepare_state( |
| 140 | + poses, distance, cos, sin, collision, a, goal_positions |
| 141 | + ) |
| 142 | + replay_buffer.add( |
| 143 | + state, [[0, 0] for _ in range(sim.num_robots)], reward, terminal, state |
| 144 | + ) |
| 145 | + |
| 146 | + test_model.train( |
| 147 | + replay_buffer=replay_buffer, |
| 148 | + iterations=2, |
| 149 | + batch_size=8, |
| 150 | + ) |
0 commit comments