Skip to content

Commit f849891

Browse files
committed
WIP
1 parent a4878ab commit f849891

File tree

5 files changed

+1271
-98
lines changed

5 files changed

+1271
-98
lines changed

api-template.md

Lines changed: 106 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,106 @@
1+
# Replicate Python SDK API reference
2+
3+
## Installation
4+
5+
```bash
6+
pip install replicate
7+
```
8+
9+
## Initialize a client
10+
11+
Start by setting a `REPLICATE_API_TOKEN` environment variable in your environment. You can create a token at [replicate.com/account/api-tokens](https://replicate.com/account/api-tokens).
12+
13+
Then use this code to initialize a client:
14+
15+
```py
16+
import replicate
17+
```
18+
19+
That's it! You can now use the client to make API calls.
20+
21+
22+
If you want to explicitly pass the token when creating a client, you can do so like this:
23+
24+
25+
```python
26+
import os
27+
import replicate
28+
29+
client = replicate.Replicate(
30+
bearer_token=os.environ["REPLICATE_API_TOKEN"]
31+
)
32+
```
33+
34+
## High-level operations
35+
36+
### `replicate.use()`
37+
38+
Create a reference to a model that can be used to make predictions.
39+
40+
```python
41+
import replicate
42+
43+
claude = replicate.use("anthropic/claude-sonnet-4")
44+
45+
output = claude(prompt="Hello, world!")
46+
print(output)
47+
48+
banana = replicate.use("google/nano-banana")
49+
output = banana(prompt="Make me a sandwich")
50+
print(output)
51+
```
52+
53+
Note: The `replicate.use()` method only returns output. If you need access to more metadata like prediction ID, status, metrics, or input values, use `replicate.predictions.create()` instead.
54+
55+
### `replicate.run()`
56+
57+
Run a model and wait for the output. This is a convenience method that creates a prediction and waits for it to complete.
58+
59+
```python
60+
import replicate
61+
62+
# Run a model and get the output directly
63+
output = replicate.run(
64+
"anthropic/claude-sonnet-4",
65+
input={"prompt": "Hello, world!"}
66+
)
67+
print(output)
68+
```
69+
70+
Note: The `replicate.run()` method only returns output. If you need access to more metadata like prediction ID, status, metrics, or input values, use `replicate.predictions.create()` instead.
71+
72+
73+
## API operations
74+
75+
<!-- API_OPERATIONS -->
76+
77+
## Low-level API
78+
79+
For cases where you need to make direct API calls not covered by the SDK methods, you can use the low-level request interface:
80+
81+
### Making custom requests
82+
83+
```python
84+
import replicate
85+
86+
client = replicate.Replicate()
87+
88+
# Make a custom GET request
89+
response = client.get("/custom/endpoint")
90+
91+
# Make a custom POST request with data
92+
response = client.post(
93+
"/custom/endpoint",
94+
json={"key": "value"}
95+
)
96+
97+
# Make a custom request with all options
98+
response = client.request(
99+
method="PATCH",
100+
url="/custom/endpoint",
101+
json={"key": "value"},
102+
headers={"X-Custom-Header": "value"}
103+
)
104+
```
105+
106+
See the [README](https://github.com/replicate/replicate-python-stainless/blob/main/README.md) for more details about response handing, error handling, pagination, async support, and more.

0 commit comments

Comments
 (0)