Skip to content

Commit 08cabce

Browse files
committed
update formatting of the example
1 parent 62dd327 commit 08cabce

File tree

1 file changed

+18
-18
lines changed

1 file changed

+18
-18
lines changed

examples/static_network_percolation/static_network_percolation.py

Lines changed: 18 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -8,6 +8,7 @@
88
import numpy as np
99
import matplotlib.pyplot as plt
1010

11+
1112
def cc_analysis(n: int, p: float, seed: int):
1213
# The Reticula magic is happening in this paragraph:
1314
state = ret.mersenne_twister(seed)
@@ -25,16 +26,17 @@ def cc_analysis(n: int, p: float, seed: int):
2526
isotropic_chi = 1/small_field * (1/n*sum_squares - 1/(n**2)*sum_cubes)
2627
return largest_comp_size, classic_chi, expected_comp_size, isotropic_chi
2728

29+
2830
if __name__ == "__main__":
2931
parser = argparse.ArgumentParser(
30-
description="Analysis of connected component size and other "
31-
"isometric percolation properties in G(n, p) networks.")
32+
description="Analysis of connected component size and other "
33+
"isometric percolation properties in G(n, p) networks.")
3234
parser.add_argument("figure", type=str, help="output figure filename")
3335
parser.add_argument("output", type=str, help="output json filename")
3436
parser.add_argument("--size", type=int, default=10000, help="system size")
3537
parser.add_argument("--ens", type=int, default=100, help="ensemble size")
3638
parser.add_argument("-j", "--jobs", type=int, default=os.cpu_count(),
37-
help="number of parallel workers")
39+
help="number of parallel workers")
3840
args = parser.parse_args()
3941

4042
seeds = range(args.ens)
@@ -51,10 +53,10 @@ def cc_analysis(n: int, p: float, seed: int):
5153
for p in p_values:
5254
for seed in seeds:
5355
futures.append((p,
54-
executor.submit(cc_analysis, size, p, seed)))
56+
executor.submit(cc_analysis, size, p, seed)))
5557

5658
for p, f in tqdm.tqdm(futures):
57-
largest_comp_size, classic_chi,\
59+
largest_comp_size, classic_chi, \
5860
exp_comp_size, isotropic_chi = f.result()
5961

6062
if p not in largest_comps:
@@ -73,41 +75,39 @@ def cc_analysis(n: int, p: float, seed: int):
7375
isotropic_chis[p] = []
7476
isotropic_chis[p].append(isotropic_chi)
7577

76-
7778
fig, axes = plt.subplots(2, 2, figsize=(8, 8), sharex=True,
78-
gridspec_kw={"wspace": 0.3, "hspace": 0.3})
79+
gridspec_kw={"wspace": 0.3, "hspace": 0.3})
7980

8081
ax_max, ax_classic_chi, ax_exp, ax_isotropic_chi = axes.flatten()
8182

8283
ax_max.plot(
83-
p_values - 1/(size-1),
84-
[np.mean(largest_comps[p]) for p in p_values])
84+
p_values - 1/(size-1),
85+
[np.mean(largest_comps[p]) for p in p_values])
8586
ax_max.set_xlabel("$p - p_c$")
8687
ax_max.set_ylabel("Largest connected component size")
8788

8889
ax_classic_chi.plot(
89-
p_values - 1/(size-1),
90-
[np.mean(classic_chis[p]) for p in p_values])
90+
p_values - 1/(size-1),
91+
[np.mean(classic_chis[p]) for p in p_values])
9192
ax_classic_chi.set_xlabel("$p - p_c$")
9293
ax_classic_chi.set_ylabel("Susceptibility "
93-
"($\\frac{\\sum_{i>0} s_i^2}{\\sum_{i > 0} s_i}$)")
94+
"($\\frac{\\sum_{i>0} s_i^2}{\\sum_{i > 0} s_i}$)")
9495

9596
ax_exp.plot(
96-
p_values - 1/(size-1),
97-
[np.mean(expected_comps[p]) for p in p_values])
97+
p_values - 1/(size-1),
98+
[np.mean(expected_comps[p]) for p in p_values])
9899
ax_exp.set_xlabel("$p - p_c$")
99100
ax_exp.set_ylabel("Expected component size")
100101

101102
ax_isotropic_chi.plot(
102-
p_values - 1/(size-1),
103-
[np.mean(isotropic_chis[p]) for p in p_values])
103+
p_values - 1/(size-1),
104+
[np.mean(isotropic_chis[p]) for p in p_values])
104105
ax_isotropic_chi.set_xlabel("$p - p_c$")
105106
ax_isotropic_chi.set_ylabel("Susceptibility "
106-
"($\\sum_i s_i^2 - \\frac{1}{n} \\sum_i s_i^3$)")
107+
"($\\sum_i s_i^2 - \\frac{1}{n} \\sum_i s_i^3$)")
107108

108109
fig.savefig(args.figure)
109110

110-
111111
report = {
112112
"size": size,
113113
"p_values": list(p_values),

0 commit comments

Comments
 (0)