|
20 | 20 | "metadata": {},
|
21 | 21 | "outputs": [],
|
22 | 22 | "source": [
|
23 |
| - "from __future__ import division, print_function\n", |
24 | 23 | "%matplotlib inline"
|
25 | 24 | ]
|
26 | 25 | },
|
|
36 | 35 | " <style>\n",
|
37 | 36 | " .output_wrapper, .output {\n",
|
38 | 37 | " height:auto !important;\n",
|
39 |
| - " max-height:100000px; \n", |
| 38 | + " max-height:100000px;\n", |
40 | 39 | " }\n",
|
41 | 40 | " .output_scroll {\n",
|
42 | 41 | " box-shadow:none !important;\n",
|
|
582 | 581 | {
|
583 | 582 | "data": {
|
584 | 583 | "application/vnd.jupyter.widget-view+json": {
|
585 |
| - "model_id": "6a0f5d2b16e54121bd8a3b11957d0966", |
| 584 | + "model_id": "69e1cf784fd743ddaeae41d5fa161216", |
586 | 585 | "version_major": 2,
|
587 | 586 | "version_minor": 0
|
588 | 587 | },
|
|
758 | 757 | {
|
759 | 758 | "data": {
|
760 | 759 | "application/vnd.jupyter.widget-view+json": {
|
761 |
| - "model_id": "5e1bbeaf87af4835869cd7a6676fa209", |
| 760 | + "model_id": "b7f90f29b9394f82b4c64982c8eab901", |
762 | 761 | "version_major": 2,
|
763 | 762 | "version_minor": 0
|
764 | 763 | },
|
|
783 | 782 | "# make interactive plot\n",
|
784 | 783 | "def show_prior(step):\n",
|
785 | 784 | " book_plots.bar_plot(predict_beliefs[step-1])\n",
|
786 |
| - " plt.title('Step {}'.format(step))\n", |
| 785 | + " plt.title(f'Step {step}')\n", |
787 | 786 | "\n",
|
788 | 787 | "interact(show_prior, step=IntSlider(value=1, max=len(predict_beliefs)));"
|
789 | 788 | ]
|
|
1247 | 1246 | {
|
1248 | 1247 | "data": {
|
1249 | 1248 | "application/vnd.jupyter.widget-view+json": {
|
1250 |
| - "model_id": "9f7338d5d95a4133ae3825b18020b9cd", |
| 1249 | + "model_id": "5e52dc4ac04b4244ad4357a4fd837902", |
1251 | 1250 | "version_major": 2,
|
1252 | 1251 | "version_minor": 0
|
1253 | 1252 | },
|
|
1300 | 1299 | {
|
1301 | 1300 | "data": {
|
1302 | 1301 | "application/vnd.jupyter.widget-view+json": {
|
1303 |
| - "model_id": "ffb4353460494a15ab0c0e9299dde120", |
| 1302 | + "model_id": "562f60dcb79f4651953d34fd40c1cab7", |
1304 | 1303 | "version_major": 2,
|
1305 | 1304 | "version_minor": 0
|
1306 | 1305 | },
|
|
1382 | 1381 | " posterior = update(likelihood, prior)\n",
|
1383 | 1382 | " prior = predict(posterior, 1, kernel)\n",
|
1384 | 1383 | " plt.subplot(5, 2, i+1)\n",
|
1385 |
| - " book_plots.bar_plot(posterior, ylim=(0, .4), title='step {}'.format(i+1))\n", |
| 1384 | + " book_plots.bar_plot(posterior, ylim=(0, .4), title=f'step {i+1}')\n", |
1386 | 1385 | " plt.tight_layout()"
|
1387 | 1386 | ]
|
1388 | 1387 | },
|
|
1515 | 1514 | " index = np.argmax(posterior)\n",
|
1516 | 1515 | "\n",
|
1517 | 1516 | " if do_print:\n",
|
1518 |
| - " print('''time {}: pos {}, sensed {}, '''\n", |
1519 |
| - " '''at position {}'''.format(\n", |
1520 |
| - " i, robot.pos, m, track[robot.pos]))\n", |
1521 |
| - "\n", |
1522 |
| - " print(''' estimated position is {}'''\n", |
1523 |
| - " ''' with confidence {:.4f}%:'''.format(\n", |
1524 |
| - " index, posterior[index]*100)) \n", |
| 1517 | + " print(f'time {i}: pos {robot.pos}, sensed {m}, at position {track[robot.pos]}')\n", |
| 1518 | + " conf = posterior[index] * 100\n", |
| 1519 | + " print(f' estimated position is {index} with confidence {conf:.4f}%:') \n", |
1525 | 1520 | "\n",
|
1526 | 1521 | " book_plots.bar_plot(posterior)\n",
|
1527 | 1522 | " if do_print:\n",
|
|
1661 | 1656 | " train_filter(148+i, kernel=[.1, .8, .1], \n",
|
1662 | 1657 | " sensor_accuracy=.8,\n",
|
1663 | 1658 | " move_distance=4, do_print=False)\n",
|
1664 |
| - " plt.title ('iteration {}'.format(148+i))" |
| 1659 | + " plt.title (f'iteration {148 + i}')" |
1665 | 1660 | ]
|
1666 | 1661 | },
|
1667 | 1662 | {
|
|
1777 | 1772 | "name": "python",
|
1778 | 1773 | "nbconvert_exporter": "python",
|
1779 | 1774 | "pygments_lexer": "ipython3",
|
1780 |
| - "version": "3.7.6" |
| 1775 | + "version": "3.7.4" |
1781 | 1776 | },
|
1782 | 1777 | "widgets": {
|
1783 | 1778 | "application/vnd.jupyter.widget-state+json": {
|
|
0 commit comments