Skip to content

Commit e7e0eb0

Browse files
committed
Pinwheel Rework
Optimized pinwheel algorithm. Math and memory optimizations by @DedeHai
1 parent a0c55c6 commit e7e0eb0

File tree

1 file changed

+122
-100
lines changed

1 file changed

+122
-100
lines changed

wled00/FX_fcn.cpp

Lines changed: 122 additions & 100 deletions
Original file line numberDiff line numberDiff line change
@@ -680,37 +680,25 @@ unsigned Segment::virtualHeight() const {
680680

681681
// Constants for mapping mode "Pinwheel"
682682
#ifndef WLED_DISABLE_2D
683-
constexpr int Pinwheel_Steps_Small = 72; // no holes up to 16x16
684-
constexpr int Pinwheel_Size_Small = 16; // larger than this -> use "Medium"
685-
constexpr int Pinwheel_Steps_Medium = 192; // no holes up to 32x32
686-
constexpr int Pinwheel_Size_Medium = 32; // larger than this -> use "Big"
687-
constexpr int Pinwheel_Steps_Big = 304; // no holes up to 50x50
688-
constexpr int Pinwheel_Size_Big = 50; // larger than this -> use "XL"
689-
constexpr int Pinwheel_Steps_XL = 368;
690-
constexpr float Int_to_Rad_Small = (DEG_TO_RAD * 360) / Pinwheel_Steps_Small; // conversion: from 0...72 to Radians
691-
constexpr float Int_to_Rad_Med = (DEG_TO_RAD * 360) / Pinwheel_Steps_Medium; // conversion: from 0...192 to Radians
692-
constexpr float Int_to_Rad_Big = (DEG_TO_RAD * 360) / Pinwheel_Steps_Big; // conversion: from 0...304 to Radians
693-
constexpr float Int_to_Rad_XL = (DEG_TO_RAD * 360) / Pinwheel_Steps_XL; // conversion: from 0...368 to Radians
694-
695-
constexpr int Fixed_Scale = 512; // fixpoint scaling factor (9bit for fraction)
696-
697-
// Pinwheel helper function: pixel index to radians
698-
static float getPinwheelAngle(int i, int vW, int vH) {
699-
int maxXY = max(vW, vH);
700-
if (maxXY <= Pinwheel_Size_Small) return float(i) * Int_to_Rad_Small;
701-
if (maxXY <= Pinwheel_Size_Medium) return float(i) * Int_to_Rad_Med;
702-
if (maxXY <= Pinwheel_Size_Big) return float(i) * Int_to_Rad_Big;
703-
// else
704-
return float(i) * Int_to_Rad_XL;
705-
}
683+
constexpr int Fixed_Scale = 16384; // fixpoint scaling factor (14bit for fraction)
706684
// Pinwheel helper function: matrix dimensions to number of rays
707685
static int getPinwheelLength(int vW, int vH) {
708-
int maxXY = max(vW, vH);
709-
if (maxXY <= Pinwheel_Size_Small) return Pinwheel_Steps_Small;
710-
if (maxXY <= Pinwheel_Size_Medium) return Pinwheel_Steps_Medium;
711-
if (maxXY <= Pinwheel_Size_Big) return Pinwheel_Steps_Big;
712-
// else
713-
return Pinwheel_Steps_XL;
686+
// Returns multiple of 8, prevents over drawing
687+
return (max(vW, vH) + 15) & ~7;
688+
}
689+
static void setPinwheelParameters(int i, int vW, int vH, int& startx, int& starty, int* cosVal, int* sinVal, bool getPixel = false) {
690+
int steps = getPinwheelLength(vW, vH);
691+
int baseAngle = ((0xFFFF + steps / 2) / steps); // 360° / steps, in 16 bit scale round to nearest integer
692+
int rotate = 0;
693+
if (getPixel) rotate = baseAngle / 2; // rotate by half a ray width when reading pixel color
694+
for (int k = 0; k < 2; k++) // angular steps for two consecutive rays
695+
{
696+
int angle = (i + k) * baseAngle + rotate;
697+
cosVal[k] = (cos16(angle) * Fixed_Scale) >> 15; // step per pixel in fixed point, cos16 output is -0x7FFF to +0x7FFF
698+
sinVal[k] = (sin16(angle) * Fixed_Scale) >> 15; // using explicit bit shifts as dividing negative numbers is not equivalent (rounding error is acceptable)
699+
}
700+
startx = (vW * Fixed_Scale) / 2; // + cosVal[0] / 4; // starting position = center + 1/4 pixel (in fixed point)
701+
starty = (vH * Fixed_Scale) / 2; // + sinVal[0] / 4;
714702
}
715703
#endif
716704

@@ -845,55 +833,103 @@ void IRAM_ATTR_YN Segment::setPixelColor(int i, uint32_t col) const
845833
for (int x = 0; x <= i; x++) setPixelColorXY(x, i, col);
846834
for (int y = 0; y < i; y++) setPixelColorXY(i, y, col);
847835
break;
848-
case M12_sPinwheel: {
849-
// i = angle --> 0 - 296 (Big), 0 - 192 (Medium), 0 - 72 (Small)
850-
float centerX = roundf((vW-1) / 2.0f);
851-
float centerY = roundf((vH-1) / 2.0f);
852-
float angleRad = getPinwheelAngle(i, vW, vH); // angle in radians
853-
float cosVal = cos_t(angleRad);
854-
float sinVal = sin_t(angleRad);
855-
856-
// avoid re-painting the same pixel
857-
int lastX = INT_MIN; // impossible position
858-
int lastY = INT_MIN; // impossible position
859-
// draw line at angle, starting at center and ending at the segment edge
860-
// we use fixed point math for better speed. Starting distance is 0.5 for better rounding
861-
// int_fast16_t and int_fast32_t types changed to int, minimum bits commented
862-
int posx = (centerX + 0.5f * cosVal) * Fixed_Scale; // X starting position in fixed point 18 bit
863-
int posy = (centerY + 0.5f * sinVal) * Fixed_Scale; // Y starting position in fixed point 18 bit
864-
int inc_x = cosVal * Fixed_Scale; // X increment per step (fixed point) 10 bit
865-
int inc_y = sinVal * Fixed_Scale; // Y increment per step (fixed point) 10 bit
866-
867-
int32_t maxX = vW * Fixed_Scale; // X edge in fixedpoint
868-
int32_t maxY = vH * Fixed_Scale; // Y edge in fixedpoint
869-
870-
// Odd rays start further from center if prevRay started at center.
871-
static int prevRay = INT_MIN; // previous ray number
872-
if ((i % 2 == 1) && (i - 1 == prevRay || i + 1 == prevRay)) {
873-
int jump = min(vW/3, vH/3); // can add 2 if using medium pinwheel
874-
posx += inc_x * jump;
875-
posy += inc_y * jump;
876-
}
877-
prevRay = i;
878-
879-
// draw ray until we hit any edge
880-
while ((posx >= 0) && (posy >= 0) && (posx < maxX) && (posy < maxY)) {
881-
// scale down to integer (compiler will replace division with appropriate bitshift)
882-
int x = posx / Fixed_Scale;
883-
int y = posy / Fixed_Scale;
884-
// set pixel
885-
if (x != lastX || y != lastY) setPixelColorXY(x, y, col); // only paint if pixel position is different
886-
lastX = x;
887-
lastY = y;
888-
// advance to next position
889-
posx += inc_x;
890-
posy += inc_y;
836+
case M12_sPinwheel: {
837+
// Uses Bresenham's algorithm to place coordinates of two lines in arrays then draws between them
838+
int startX, startY, cosVal[2], sinVal[2]; // in fixed point scale
839+
setPinwheelParameters(i, vW, vH, startX, startY, cosVal, sinVal);
840+
841+
unsigned maxLineLength = max(vW, vH) + 2; // pixels drawn is always smaller than dx or dy, +1 pair for rounding errors
842+
uint16_t lineCoords[2][maxLineLength]; // uint16_t to save ram
843+
int lineLength[2] = {0};
844+
845+
static int prevRays[2] = {INT_MAX, INT_MAX}; // previous two ray numbers
846+
int closestEdgeIdx = INT_MAX; // index of the closest edge pixel
847+
848+
for (int lineNr = 0; lineNr < 2; lineNr++) {
849+
int x0 = startX; // x, y coordinates in fixed scale
850+
int y0 = startY;
851+
int x1 = (startX + (cosVal[lineNr] << 9)); // outside of grid
852+
int y1 = (startY + (sinVal[lineNr] << 9)); // outside of grid
853+
const int dx = abs(x1-x0), sx = x0<x1 ? 1 : -1; // x distance & step
854+
const int dy = -abs(y1-y0), sy = y0<y1 ? 1 : -1; // y distance & step
855+
uint16_t* coordinates = lineCoords[lineNr]; // 1D access is faster
856+
int* length = &lineLength[lineNr]; // faster access
857+
x0 /= Fixed_Scale; // convert to pixel coordinates
858+
y0 /= Fixed_Scale;
859+
860+
// Bresenham's algorithm
861+
int idx = 0;
862+
int err = dx + dy;
863+
while (true) {
864+
if (unsigned(x0) >= vW || unsigned(y0) >= vH) {
865+
closestEdgeIdx = min(closestEdgeIdx, idx-2);
866+
break; // stop if outside of grid (exploit unsigned int overflow)
867+
}
868+
coordinates[idx++] = x0;
869+
coordinates[idx++] = y0;
870+
(*length)++;
871+
// note: since endpoint is out of grid, no need to check if endpoint is reached
872+
int e2 = 2 * err;
873+
if (e2 >= dy) { err += dy; x0 += sx; }
874+
if (e2 <= dx) { err += dx; y0 += sy; }
875+
}
876+
}
877+
878+
// fill up the shorter line with missing coordinates, so block filling works correctly and efficiently
879+
int diff = lineLength[0] - lineLength[1];
880+
int longLineIdx = (diff > 0) ? 0 : 1;
881+
int shortLineIdx = longLineIdx ? 0 : 1;
882+
if (diff != 0) {
883+
int idx = (lineLength[shortLineIdx] - 1) * 2; // last valid coordinate index
884+
int lastX = lineCoords[shortLineIdx][idx++];
885+
int lastY = lineCoords[shortLineIdx][idx++];
886+
bool keepX = lastX == 0 || lastX == vW - 1;
887+
for (int d = 0; d < abs(diff); d++) {
888+
lineCoords[shortLineIdx][idx] = keepX ? lastX :lineCoords[longLineIdx][idx];
889+
idx++;
890+
lineCoords[shortLineIdx][idx] = keepX ? lineCoords[longLineIdx][idx] : lastY;
891+
idx++;
892+
}
893+
}
894+
895+
// draw and block-fill the line coordinates. Note: block filling only efficient if angle between lines is small
896+
closestEdgeIdx += 2;
897+
int max_i = getPinwheelLength(vW, vH) - 1;
898+
bool drawFirst = !(prevRays[0] == i - 1 || (i == 0 && prevRays[0] == max_i)); // draw first line if previous ray was not adjacent including wrap
899+
bool drawLast = !(prevRays[0] == i + 1 || (i == max_i && prevRays[0] == 0)); // same as above for last line
900+
for (int idx = 0; idx < lineLength[longLineIdx] * 2;) { //!! should be long line idx!
901+
int x1 = lineCoords[0][idx];
902+
int x2 = lineCoords[1][idx++];
903+
int y1 = lineCoords[0][idx];
904+
int y2 = lineCoords[1][idx++];
905+
int minX, maxX, minY, maxY;
906+
(x1 < x2) ? (minX = x1, maxX = x2) : (minX = x2, maxX = x1);
907+
(y1 < y2) ? (minY = y1, maxY = y2) : (minY = y2, maxY = y1);
908+
909+
// fill the block between the two x,y points
910+
bool alwaysDraw = (drawFirst && drawLast) || // No adjacent rays, draw all pixels
911+
(idx > closestEdgeIdx) || // Edge pixels on uneven lines are always drawn
912+
(i == 0 && idx == 2) || // Center pixel special case
913+
(i == prevRays[1]); // Effect drawing twice in 1 frame
914+
for (int x = minX; x <= maxX; x++) {
915+
for (int y = minY; y <= maxY; y++) {
916+
bool onLine1 = x == x1 && y == y1;
917+
bool onLine2 = x == x2 && y == y2;
918+
if ((alwaysDraw) ||
919+
(!onLine1 && (!onLine2 || drawLast)) || // Middle pixels and line2 if drawLast
920+
(!onLine2 && (!onLine1 || drawFirst)) // Middle pixels and line1 if drawFirst
921+
) {
922+
setPixelColorXY(x, y, col);
923+
}
924+
}
925+
}
926+
}
927+
prevRays[1] = prevRays[0];
928+
prevRays[0] = i;
929+
break;
891930
}
892-
break;
893931
}
894-
}
895-
_colorScaled = false;
896-
return;
932+
return;
897933
} else if (Segment::maxHeight != 1 && (width() == 1 || height() == 1)) {
898934
if (start < Segment::maxWidth*Segment::maxHeight) {
899935
// we have a vertical or horizontal 1D segment (WARNING: virtual...() may be transposed)
@@ -1025,31 +1061,17 @@ uint32_t IRAM_ATTR_YN Segment::getPixelColor(int i) const
10251061
break;
10261062
case M12_sPinwheel:
10271063
// not 100% accurate, returns pixel at outer edge
1028-
// i = angle --> 0 - 296 (Big), 0 - 192 (Medium), 0 - 72 (Small)
1029-
float centerX = roundf((vW-1) / 2.0f);
1030-
float centerY = roundf((vH-1) / 2.0f);
1031-
float angleRad = getPinwheelAngle(i, vW, vH); // angle in radians
1032-
float cosVal = cos_t(angleRad);
1033-
float sinVal = sin_t(angleRad);
1034-
1035-
int posx = (centerX + 0.5f * cosVal) * Fixed_Scale; // X starting position in fixed point 18 bit
1036-
int posy = (centerY + 0.5f * sinVal) * Fixed_Scale; // Y starting position in fixed point 18 bit
1037-
int inc_x = cosVal * Fixed_Scale; // X increment per step (fixed point) 10 bit
1038-
int inc_y = sinVal * Fixed_Scale; // Y increment per step (fixed point) 10 bit
1039-
int32_t maxX = vW * Fixed_Scale; // X edge in fixedpoint
1040-
int32_t maxY = vH * Fixed_Scale; // Y edge in fixedpoint
1041-
1042-
// trace ray from center until we hit any edge - to avoid rounding problems, we use the same method as in setPixelColor
1043-
int x = INT_MIN;
1044-
int y = INT_MIN;
1045-
while ((posx >= 0) && (posy >= 0) && (posx < maxX) && (posy < maxY)) {
1046-
// scale down to integer (compiler will replace division with appropriate bitshift)
1047-
x = posx / Fixed_Scale;
1048-
y = posy / Fixed_Scale;
1049-
// advance to next position
1050-
posx += inc_x;
1051-
posy += inc_y;
1064+
int x, y, cosVal[2], sinVal[2];
1065+
setPinwheelParameters(i, vW, vH, x, y, cosVal, sinVal, true);
1066+
int maxX = (vW-1) * Fixed_Scale;
1067+
int maxY = (vH-1) * Fixed_Scale;
1068+
// trace ray from center until we hit any edge - to avoid rounding problems, we use fixed point coordinates
1069+
while ((x < maxX) && (y < maxY) && (x > Fixed_Scale) && (y > Fixed_Scale)) {
1070+
x += cosVal[0]; // advance to next position
1071+
y += sinVal[0];
10521072
}
1073+
x /= Fixed_Scale;
1074+
y /= Fixed_Scale;
10531075
return getPixelColorXY(x, y);
10541076
break;
10551077
}

0 commit comments

Comments
 (0)