|
| 1 | +#!/usr/bin/env python3 |
| 2 | +# |
| 3 | +# Copyright (c) FIRST and other WPILib contributors. |
| 4 | +# Open Source Software; you can modify and/or share it under the terms of |
| 5 | +# the WPILib BSD license file in the root directory of this project. |
| 6 | +# |
| 7 | + |
| 8 | +import math |
| 9 | +import wpilib |
| 10 | +import wpimath |
| 11 | +import wpimath.units |
| 12 | +import wpimath.controller |
| 13 | +import wpimath.system |
| 14 | +import wpimath.system.plant |
| 15 | +import wpimath.estimator |
| 16 | + |
| 17 | +kMotorPort = 0 |
| 18 | +kEncoderAChannel = 0 |
| 19 | +kEncoderBChannel = 1 |
| 20 | +kJoystickPort = 0 |
| 21 | +kSpinupRadPerSec = wpimath.units.rotationsPerMinuteToRadiansPerSecond(500.0) |
| 22 | + |
| 23 | +# Volts per (radian per second) |
| 24 | +kFlywheelKv = 0.023 |
| 25 | + |
| 26 | +# Volts per (radian per second squared) |
| 27 | +kFlywheelKa = 0.001 |
| 28 | + |
| 29 | + |
| 30 | +class MyRobot(wpilib.TimedRobot): |
| 31 | + """ |
| 32 | + This is a sample program to demonstrate how to use a state-space controller to control a |
| 33 | + flywheel. |
| 34 | + """ |
| 35 | + |
| 36 | + def robotInit(self) -> None: |
| 37 | + # The plant holds a state-space model of our flywheel. This system has the following properties: |
| 38 | + # |
| 39 | + # States: [velocity], in radians per second. |
| 40 | + # Inputs (what we can "put in"): [voltage], in volts. |
| 41 | + # Outputs (what we can measure): [velocity], in radians per second. |
| 42 | + # |
| 43 | + # The Kv and Ka constants are found using the FRC Characterization toolsuite. |
| 44 | + self.flywheelPlant = ( |
| 45 | + wpimath.system.plant.LinearSystemId.identifyVelocitySystemRadians( |
| 46 | + kFlywheelKv, kFlywheelKa |
| 47 | + ) |
| 48 | + ) |
| 49 | + |
| 50 | + # The observer fuses our encoder data and voltage inputs to reject noise. |
| 51 | + self.observer = wpimath.estimator.KalmanFilter_1_1_1( |
| 52 | + self.flywheelPlant, |
| 53 | + [3], # How accurate we think our model is |
| 54 | + [0.01], # How accurate we think our encoder data is |
| 55 | + 0.020, |
| 56 | + ) |
| 57 | + |
| 58 | + # A LQR uses feedback to create voltage commands. |
| 59 | + self.controller = wpimath.controller.LinearQuadraticRegulator_1_1( |
| 60 | + self.flywheelPlant, |
| 61 | + [8], # Velocity error tolerance |
| 62 | + [12], # Control effort (voltage) tolerance |
| 63 | + 0.020, |
| 64 | + ) |
| 65 | + |
| 66 | + # The state-space loop combines a controller, observer, feedforward and plant for easy control. |
| 67 | + self.loop = wpimath.system.LinearSystemLoop_1_1_1( |
| 68 | + self.flywheelPlant, self.controller, self.observer, 12.0, 0.020 |
| 69 | + ) |
| 70 | + |
| 71 | + # An encoder set up to measure flywheel velocity in radians per second. |
| 72 | + self.encoder = wpilib.Encoder(kEncoderAChannel, kEncoderBChannel) |
| 73 | + |
| 74 | + self.motor = wpilib.PWMSparkMax(kMotorPort) |
| 75 | + |
| 76 | + # A joystick to read the trigger from. |
| 77 | + self.joystick = wpilib.Joystick(kJoystickPort) |
| 78 | + |
| 79 | + # We go 2 pi radians per 4096 clicks. |
| 80 | + self.encoder.setDistancePerPulse(2 * math.pi / 4096) |
| 81 | + |
| 82 | + def teleopInit(self) -> None: |
| 83 | + self.loop.reset([self.encoder.getRate()]) |
| 84 | + |
| 85 | + def teleopPeriodic(self) -> None: |
| 86 | + # Sets the target speed of our flywheel. This is similar to setting the setpoint of a |
| 87 | + # PID controller. |
| 88 | + if self.joystick.getTriggerPressed(): |
| 89 | + # We just pressed the trigger, so let's set our next reference |
| 90 | + self.loop.setNextR([kSpinUpRadPerSec]) |
| 91 | + |
| 92 | + elif self.joystick.getTriggerReleased(): |
| 93 | + # We just released the trigger, so let's spin down |
| 94 | + self.loop.setNextR([0]) |
| 95 | + |
| 96 | + # Correct our Kalman filter's state vector estimate with encoder data. |
| 97 | + self.loop.correct([self.encoder.getRate()]) |
| 98 | + |
| 99 | + # Update our LQR to generate new voltage commands and use the voltages to predict the next |
| 100 | + # state with out Kalman filter. |
| 101 | + self.loop.predict(0.020) |
| 102 | + |
| 103 | + # Send the new calculated voltage to the motors. |
| 104 | + # voltage = duty cycle * battery voltage, so |
| 105 | + # duty cycle = voltage / battery voltage |
| 106 | + nextVoltage = self.loop.U() |
| 107 | + self.motor.setVoltage(nextVoltage) |
| 108 | + |
| 109 | + |
| 110 | +if __name__ == "__main__": |
| 111 | + wpilib.run(MyRobot) |
0 commit comments