Skip to content

Commit 442c7e0

Browse files
author
Gregory Malecha
committed
more consistent naming in Data.Prop.
1 parent c32e340 commit 442c7e0

File tree

1 file changed

+25
-23
lines changed

1 file changed

+25
-23
lines changed

theories/Data/Prop.v

Lines changed: 25 additions & 23 deletions
Original file line numberDiff line numberDiff line change
@@ -12,59 +12,61 @@ Qed.
1212

1313
(** NOTE: These should fit into a larger picture, e.g. lattices or monoids **)
1414
(** And/Conjunction **)
15-
Lemma And_True_iff : forall P, (P /\ True) <-> P.
15+
Lemma and_True_iff : forall P, (P /\ True) <-> P.
1616
Proof. intuition. Qed.
1717

18-
Lemma And_And_iff : forall P, (P /\ P) <-> P.
18+
Lemma and_and_iff : forall P, (P /\ P) <-> P.
1919
Proof. intuition. Qed.
2020

21-
Lemma And_assoc : forall P Q R, (P /\ Q /\ R) <-> ((P /\ Q) /\ R).
21+
Lemma and_assoc : forall P Q R, (P /\ Q /\ R) <-> ((P /\ Q) /\ R).
2222
Proof. intuition. Qed.
2323

24-
Lemma And_comm : forall P Q, (P /\ Q) <-> (Q /\ P).
24+
Lemma and_comm : forall P Q, (P /\ Q) <-> (Q /\ P).
2525
Proof. intuition. Qed.
2626

27-
Lemma And_False_iff : forall P, (P /\ False) <-> False.
27+
Lemma and_False_iff : forall P, (P /\ False) <-> False.
2828
Proof. intuition. Qed.
2929

30-
Lemma And_cancel
30+
Lemma and_cancel
3131
: forall P Q R : Prop, (P -> (Q <-> R)) -> ((P /\ Q) <-> (P /\ R)).
3232
Proof. intuition. Qed.
3333

34+
Lemma and_iff
35+
: forall P Q R S : Prop,
36+
(P <-> R) ->
37+
(P -> (Q <-> S)) ->
38+
((P /\ Q) <-> (R /\ S)).
39+
Proof. clear; intuition. Qed.
40+
3441
(** Or/Disjunction **)
35-
Lemma Or_False_iff : forall P, (P \/ False) <-> P.
42+
Lemma or_False_iff : forall P, (P \/ False) <-> P.
3643
Proof. intuition. Qed.
3744

38-
Lemma Or_Or_iff : forall P, (P \/ P) <-> P.
45+
Lemma or_or_iff : forall P, (P \/ P) <-> P.
3946
Proof. intuition. Qed.
4047

41-
Lemma Or_assoc : forall P Q R, (P \/ Q \/ R) <-> ((P \/ Q) \/ R).
48+
Lemma or_assoc : forall P Q R, (P \/ Q \/ R) <-> ((P \/ Q) \/ R).
4249
Proof. intuition. Qed.
4350

44-
Lemma Or_comm : forall P Q, (P \/ Q) <-> (Q \/ P).
51+
Lemma or_comm : forall P Q, (P \/ Q) <-> (Q \/ P).
4552
Proof. intuition. Qed.
4653

47-
Lemma Or_True_iff : forall P, (P \/ True) <-> True.
54+
Lemma or_True_iff : forall P, (P \/ True) <-> True.
4855
Proof. intuition. Qed.
4956

50-
Lemma Impl_iff
57+
(** Implication **)
58+
Lemma impl_True_iff : forall (P : Prop), (True -> P) <-> P.
59+
Proof.
60+
clear; intros; tauto.
61+
Qed.
62+
63+
Lemma impl_iff
5164
: forall P Q R S : Prop,
5265
(P <-> R) ->
5366
(P -> (Q <-> S)) ->
5467
((P -> Q) <-> (R -> S)).
5568
Proof. clear. intuition. Qed.
5669

57-
Lemma And_iff
58-
: forall P Q R S : Prop,
59-
(P <-> R) ->
60-
(P -> (Q <-> S)) ->
61-
((P /\ Q) <-> (R /\ S)).
62-
Proof. clear; intuition. Qed.
63-
64-
Lemma Impl_True_iff : forall (P : Prop), (True -> P) <-> P.
65-
Proof.
66-
clear; intros; tauto.
67-
Qed.
6870

6971
(** Forall **)
7072
Lemma forall_iff : forall T P Q,

0 commit comments

Comments
 (0)