@@ -18,7 +18,7 @@ Section type.
1818
1919 Polymorphic Variables (tOk : typeOk tT) (uOk : typeOk tU).
2020
21- Global Instance typeOk_Fun : typeOk type_Fun.
21+ Global Polymorphic Instance typeOk_Fun : typeOk type_Fun.
2222 Proof .
2323 constructor.
2424 { unfold equiv. simpl. unfold respectful.
@@ -41,27 +41,27 @@ Section type.
4141 apply tOk. }
4242 Qed .
4343
44- Global Instance proper_app : forall (f : T -> U) (a : T),
44+ Global Polymorphic Instance proper_app : forall (f : T -> U) (a : T),
4545 proper f -> proper a -> proper (f a).
4646 Proof .
4747 simpl; intros. red in H.
4848 eapply proper_left; eauto.
4949 eapply H. eapply preflexive. eapply equiv_prefl; auto. auto.
5050 Qed .
5151
52- Theorem proper_fun : forall (f : T -> U),
52+ Polymorphic Theorem proper_fun : forall (f : T -> U),
5353 (forall x y, equal x y -> equal (f x) (f y)) ->
5454 proper f.
5555 Proof .
5656 intros. do 3 red. eauto.
5757 Qed .
5858
59- Theorem equal_fun : forall (f g : T -> U),
59+ Polymorphic Theorem equal_fun : forall (f g : T -> U),
6060 (forall x y, equal x y -> equal (f x) (g y)) ->
6161 equal f g.
6262 Proof . intros. do 3 red. apply H. Qed .
6363
64- Theorem equal_app : forall (f g : T -> U) (x y : T),
64+ Polymorphic Theorem equal_app : forall (f g : T -> U) (x y : T),
6565 equal f g -> equal x y ->
6666 equal (f x) (g y).
6767 Proof .
0 commit comments