|
| 1 | +import unittest |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +import ROOT |
| 5 | + |
| 6 | + |
| 7 | +class NumpyArrayView(unittest.TestCase): |
| 8 | + """ |
| 9 | + Test the conversion of interpreter-defined C++ arrays into numpy views |
| 10 | + """ |
| 11 | + |
| 12 | + # typemaps based on https://numpy.org/doc/stable/reference/arrays.scalars.html |
| 13 | + cpp_dtypes = [ |
| 14 | + "char", |
| 15 | + "unsigned char", |
| 16 | + "int", |
| 17 | + "unsigned int", |
| 18 | + "short", |
| 19 | + "unsigned short", |
| 20 | + "float", |
| 21 | + "int8_t", |
| 22 | + "uint8_t", |
| 23 | + "int16_t", |
| 24 | + "uint16_t", |
| 25 | + "int32_t", |
| 26 | + "uint32_t", |
| 27 | + ] |
| 28 | + |
| 29 | + np_dtypes = [ |
| 30 | + np.byte, |
| 31 | + np.ubyte, |
| 32 | + np.intc, |
| 33 | + np.uintc, |
| 34 | + np.short, |
| 35 | + np.ushort, |
| 36 | + np.float32, |
| 37 | + np.int8, |
| 38 | + np.uint8, |
| 39 | + np.int16, |
| 40 | + np.uint16, |
| 41 | + np.int32, |
| 42 | + np.uint32, |
| 43 | + ] |
| 44 | + |
| 45 | + typemap = zip(np_dtypes, cpp_dtypes) |
| 46 | + |
| 47 | + bounds = { |
| 48 | + "char": (-128, 127), |
| 49 | + "unsigned char": (0, 255), |
| 50 | + "int": (-(2**31), 2**31 - 1), |
| 51 | + "unsigned int": (0, 2**32 - 1), |
| 52 | + "short": (-(2**15), 2**15 - 1), |
| 53 | + "unsigned short": (0, 2**16 - 1), |
| 54 | + # FIXME : low level views for 64 bit types (long and double) do not work, upstream interprets the converter with dims = 0, |
| 55 | + # which somehow makes this work, however this needs to be investigated further. |
| 56 | + "long": (-(2**31), 2**31 - 1), |
| 57 | + "long long": (-(2**62), 2**62 - 1), |
| 58 | + "unsigned long": (0, 2**32 - 1), |
| 59 | + "unsigned long long": (0, 2**64 - 1), |
| 60 | + "float": (-3.4e38, 3.4e38), |
| 61 | + "double": (-1.7e308, 1.7e308), |
| 62 | + "int8_t": (-128, 127), |
| 63 | + "uint8_t": (0, 255), |
| 64 | + "int16_t": (-(2**15), 2**15 - 1), |
| 65 | + "uint16_t": (0, 2**16 - 1), |
| 66 | + "int32_t": (-(2**31), 2**31 - 1), |
| 67 | + "uint32_t": (0, 2**32 - 1), |
| 68 | + } |
| 69 | + |
| 70 | + def generate_cpp_arrays(self, dtype_cpp): |
| 71 | + mn, mx = self.bounds[dtype_cpp] |
| 72 | + # sanitize a name for the struct so there's no spaces |
| 73 | + tag = dtype_cpp.replace(" ", "_").replace("unsigned_", "u") |
| 74 | + |
| 75 | + cpp = f""" |
| 76 | + struct Foo_{tag} {{ |
| 77 | + {dtype_cpp} bar[11][2] = {{}}; |
| 78 | + }}; |
| 79 | + Foo_{tag} foo_{tag}; |
| 80 | + foo_{tag}.bar[0][0] = {mn}; |
| 81 | + foo_{tag}.bar[1][1] = {mx}; |
| 82 | + foo_{tag}.bar[2][0] = {mn}; |
| 83 | + foo_{tag}.bar[3][1] = {mx}; |
| 84 | + foo_{tag}.bar[4][0] = {mn}; |
| 85 | + foo_{tag}.bar[5][1] = {mx}; |
| 86 | + foo_{tag}.bar[6][0] = {mn}; |
| 87 | + foo_{tag}.bar[7][1] = {mx}; |
| 88 | + foo_{tag}.bar[8][0] = {mn}; |
| 89 | + foo_{tag}.bar[9][1] = {mx}; |
| 90 | + foo_{tag}.bar[10][0] = {mn}; |
| 91 | + """ |
| 92 | + ROOT.gInterpreter.ProcessLine(cpp) |
| 93 | + return getattr(ROOT, f"foo_{tag}").bar |
| 94 | + |
| 95 | + def check_shape(self, cpp_arr, np_obj): |
| 96 | + self.assertEqual(cpp_arr.shape, np_obj.shape) |
| 97 | + |
| 98 | + def validate_numpy_view(self, np_obj, dtype): |
| 99 | + # obtain bounds for C++ builtins |
| 100 | + mn, mx = self.bounds[dtype[1]] |
| 101 | + kind = dtype[0] |
| 102 | + |
| 103 | + if issubclass(kind, np.integer): |
| 104 | + cast = int |
| 105 | + elif issubclass(kind, np.floating): |
| 106 | + |
| 107 | + def cast(v): |
| 108 | + return float(f"{v:.2e}") |
| 109 | + |
| 110 | + for i, row in enumerate(np_obj[:11]): |
| 111 | + # we check col 0 for even i, 1 for odd i, as the array was filled that way |
| 112 | + col = i & 1 |
| 113 | + val = cast(row[col]) |
| 114 | + |
| 115 | + # the expected bound is min for col 0 and max for col 1 |
| 116 | + expected = mn if col == 0 else mx |
| 117 | + self.assertEqual(val, expected) |
| 118 | + |
| 119 | + def test_2DArray_NumpyView(self): |
| 120 | + """ |
| 121 | + Test correct numpy view for different C++ builtin-type 2D arrays |
| 122 | + """ |
| 123 | + for dtype in self.typemap: |
| 124 | + cpp_arr = self.generate_cpp_arrays(dtype[1]) |
| 125 | + np_obj = np.frombuffer(cpp_arr, dtype[0], count=11 * 2).reshape(11, 2) |
| 126 | + self.check_shape(cpp_arr, np_obj) |
| 127 | + self.validate_numpy_view(np_obj, dtype) |
| 128 | + |
| 129 | + |
| 130 | +if __name__ == "__main__": |
| 131 | + unittest.main() |
0 commit comments