@@ -74,14 +74,9 @@ metric_binary_focal_crossentropy <-
7474function (y_true , y_pred , apply_class_balancing = FALSE , alpha = 0.25 ,
7575 gamma = 2 , from_logits = FALSE , label_smoothing = 0 , axis = - 1L )
7676{
77- args <- capture_args(list (
78- y_true = function (x )
79- if (is_py_object(x )) x
80- else np_array(x ),
81- y_pred = function (x )
82- if (is_py_object(x )) x
83- else np_array(x ), axis = as_axis )
84- )
77+ args <- capture_args(list (axis = as_axis ,
78+ y_true = as_py_array ,
79+ y_pred = as_py_array ))
8580 do.call(keras $ metrics $ binary_focal_crossentropy , args )
8681}
8782
@@ -145,13 +140,9 @@ metric_categorical_focal_crossentropy <-
145140function (y_true , y_pred , alpha = 0.25 , gamma = 2 , from_logits = FALSE ,
146141 label_smoothing = 0 , axis = - 1L )
147142{
148- args <- capture_args(list (y_true = function (x )
149- if (is_py_object(x ))
150- x
151- else np_array(x ), y_pred = function (x )
152- if (is_py_object(x ))
153- x
154- else np_array(x ), axis = as_axis ))
143+ args <- capture_args(list (axis = as_axis ,
144+ y_true = as_py_array ,
145+ y_pred = as_py_array ))
155146 do.call(keras $ metrics $ categorical_focal_crossentropy , args )
156147}
157148
@@ -203,13 +194,7 @@ function (y_true, y_pred, alpha = 0.25, gamma = 2, from_logits = FALSE,
203194metric_huber <-
204195function (y_true , y_pred , delta = 1 )
205196{
206- args <- capture_args(list (y_true = function (x )
207- if (is_py_object(x ))
208- x
209- else np_array(x ), y_pred = function (x )
210- if (is_py_object(x ))
211- x
212- else np_array(x )))
197+ args <- capture_args(list (y_true = as_py_array , y_pred = as_py_array ))
213198 do.call(keras $ metrics $ huber , args )
214199}
215200
@@ -255,13 +240,7 @@ function (y_true, y_pred, delta = 1)
255240metric_log_cosh <-
256241function (y_true , y_pred )
257242{
258- args <- capture_args(list (y_true = function (x )
259- if (is_py_object(x ))
260- x
261- else np_array(x ), y_pred = function (x )
262- if (is_py_object(x ))
263- x
264- else np_array(x )))
243+ args <- capture_args(list (y_true = as_py_array , y_pred = as_py_array ))
265244 do.call(keras $ metrics $ log_cosh , args )
266245}
267246
@@ -339,13 +318,7 @@ metric_binary_accuracy <-
339318function (y_true , y_pred , threshold = 0.5 , ... , name = " binary_accuracy" ,
340319 dtype = NULL )
341320{
342- args <- capture_args(list (y_true = function (x )
343- if (is_py_object(x ))
344- x
345- else np_array(x ), y_pred = function (x )
346- if (is_py_object(x ))
347- x
348- else np_array(x )))
321+ args <- capture_args(list (y_true = as_py_array , y_pred = as_py_array ))
349322 callable <- if (missing(y_true ) && missing(y_pred ))
350323 keras $ metrics $ BinaryAccuracy
351324 else keras $ metrics $ binary_accuracy
@@ -426,13 +399,7 @@ metric_categorical_accuracy <-
426399function (y_true , y_pred , ... , name = " categorical_accuracy" ,
427400 dtype = NULL )
428401{
429- args <- capture_args(list (y_true = function (x )
430- if (is_py_object(x ))
431- x
432- else np_array(x ), y_pred = function (x )
433- if (is_py_object(x ))
434- x
435- else np_array(x )))
402+ args <- capture_args(list (y_true = as_py_array , y_pred = as_py_array ))
436403 callable <- if (missing(y_true ) && missing(y_pred ))
437404 keras $ metrics $ CategoricalAccuracy
438405 else keras $ metrics $ categorical_accuracy
@@ -510,13 +477,8 @@ metric_sparse_categorical_accuracy <-
510477function (y_true , y_pred , ... , name = " sparse_categorical_accuracy" ,
511478 dtype = NULL )
512479{
513- args <- capture_args(list (y_true = function (x )
514- if (is_py_object(x ))
515- x
516- else np_array(x ), y_pred = function (x )
517- if (is_py_object(x ))
518- x
519- else np_array(x )))
480+ args <- capture_args(list (y_true = as_py_array ,
481+ y_pred = as_py_array ))
520482 callable <- if (missing(y_true ) && missing(y_pred ))
521483 keras $ metrics $ SparseCategoricalAccuracy
522484 else keras $ metrics $ sparse_categorical_accuracy
@@ -590,13 +552,9 @@ metric_sparse_top_k_categorical_accuracy <-
590552function (y_true , y_pred , k = 5L , ... , name = " sparse_top_k_categorical_accuracy" ,
591553 dtype = NULL )
592554{
593- args <- capture_args(list (k = as_integer , y_true = function (x )
594- if (is_py_object(x ))
595- x
596- else np_array(x ), y_pred = function (x )
597- if (is_py_object(x ))
598- x
599- else np_array(x )))
555+ args <- capture_args(list (k = as_integer ,
556+ y_true = as_py_array ,
557+ y_pred = as_py_array ))
600558 callable <- if (missing(y_true ) && missing(y_pred ))
601559 keras $ metrics $ SparseTopKCategoricalAccuracy
602560 else keras $ metrics $ sparse_top_k_categorical_accuracy
@@ -669,13 +627,9 @@ metric_top_k_categorical_accuracy <-
669627function (y_true , y_pred , k = 5L , ... , name = " top_k_categorical_accuracy" ,
670628 dtype = NULL )
671629{
672- args <- capture_args(list (
673- k = as_integer ,
674- y_true = function (x )
675- if (is_py_object(x )) x else np_array(x ),
676- y_pred = function (x )
677- if (is_py_object(x )) x else np_array(x )
678- ))
630+ args <- capture_args(list (k = as_integer ,
631+ y_true = as_py_array ,
632+ y_pred = as_py_array ))
679633 callable <- if (missing(y_true ) && missing(y_pred ))
680634 keras $ metrics $ TopKCategoricalAccuracy
681635 else keras $ metrics $ top_k_categorical_accuracy
@@ -1891,13 +1845,7 @@ metric_categorical_hinge <-
18911845function (y_true , y_pred , ... , name = " categorical_hinge" ,
18921846 dtype = NULL )
18931847{
1894- args <- capture_args(list (y_true = function (x )
1895- if (is_py_object(x ))
1896- x
1897- else np_array(x ), y_pred = function (x )
1898- if (is_py_object(x ))
1899- x
1900- else np_array(x )))
1848+ args <- capture_args(list (y_true = as_py_array , y_pred = as_py_array ))
19011849 callable <- if (missing(y_true ) && missing(y_pred ))
19021850 keras $ metrics $ CategoricalHinge
19031851 else keras $ metrics $ categorical_hinge
@@ -1961,13 +1909,7 @@ function (y_true, y_pred, ..., name = "categorical_hinge",
19611909metric_hinge <-
19621910function (y_true , y_pred , ... , name = " hinge" , dtype = NULL )
19631911{
1964- args <- capture_args(list (y_true = function (x )
1965- if (is_py_object(x ))
1966- x
1967- else np_array(x ), y_pred = function (x )
1968- if (is_py_object(x ))
1969- x
1970- else np_array(x )))
1912+ args <- capture_args(list (y_true = as_py_array , y_pred = as_py_array ))
19711913 callable <- if (missing(y_true ) && missing(y_pred ))
19721914 keras $ metrics $ Hinge
19731915 else keras $ metrics $ hinge
@@ -2032,13 +1974,7 @@ metric_squared_hinge <-
20321974function (y_true , y_pred , ... , name = " squared_hinge" ,
20331975 dtype = NULL )
20341976{
2035- args <- capture_args(list (y_true = function (x )
2036- if (is_py_object(x ))
2037- x
2038- else np_array(x ), y_pred = function (x )
2039- if (is_py_object(x ))
2040- x
2041- else np_array(x )))
1977+ args <- capture_args(list (y_true = as_py_array , y_pred = as_py_array ))
20421978 callable <- if (missing(y_true ) && missing(y_pred ))
20431979 keras $ metrics $ SquaredHinge
20441980 else keras $ metrics $ squared_hinge
@@ -2450,9 +2386,10 @@ metric_one_hot_iou <-
24502386function (... , num_classes , target_class_ids , name = NULL , dtype = NULL ,
24512387 ignore_class = NULL , sparse_y_pred = FALSE , axis = - 1L )
24522388{
2453- args <- capture_args(list (ignore_class = as_integer , axis = as_axis ,
2454- num_classes = as_integer , target_class_ids = function (x )
2455- lapply(x , as_integer )))
2389+ args <- capture_args(list (
2390+ ignore_class = as_integer ,
2391+ axis = as_axis , num_classes = as_integer ,
2392+ target_class_ids = function (x ) lapply(x , as_integer )))
24562393 do.call(keras $ metrics $ OneHotIoU , args )
24572394}
24582395
@@ -2633,14 +2570,9 @@ metric_binary_crossentropy <-
26332570function (y_true , y_pred , from_logits = FALSE , label_smoothing = 0 ,
26342571 axis = - 1L , ... , name = " binary_crossentropy" , dtype = NULL )
26352572{
2636- args <- capture_args(list (label_smoothing = as_integer ,
2637- y_true = function (x )
2638- if (is_py_object(x ))
2639- x
2640- else np_array(x ), y_pred = function (x )
2641- if (is_py_object(x ))
2642- x
2643- else np_array(x ), axis = as_axis ))
2573+ args <- capture_args(list (axis = as_axis ,
2574+ y_true = as_py_array ,
2575+ y_pred = as_py_array ))
26442576 callable <- if (missing(y_true ) && missing(y_pred ))
26452577 keras $ metrics $ BinaryCrossentropy
26462578 else keras $ metrics $ binary_crossentropy
@@ -2736,14 +2668,9 @@ metric_categorical_crossentropy <-
27362668function (y_true , y_pred , from_logits = FALSE , label_smoothing = 0 ,
27372669 axis = - 1L , ... , name = " categorical_crossentropy" , dtype = NULL )
27382670{
2739- args <- capture_args(list (label_smoothing = as_integer ,
2740- axis = as_axis , y_true = function (x )
2741- if (is_py_object(x ))
2742- x
2743- else np_array(x ), y_pred = function (x )
2744- if (is_py_object(x ))
2745- x
2746- else np_array(x )))
2671+ args <- capture_args(list (axis = as_axis ,
2672+ y_true = as_py_array ,
2673+ y_pred = as_py_array ))
27472674 callable <- if (missing(y_true ) && missing(y_pred ))
27482675 keras $ metrics $ CategoricalCrossentropy
27492676 else keras $ metrics $ categorical_crossentropy
@@ -2817,13 +2744,7 @@ metric_kl_divergence <-
28172744function (y_true , y_pred , ... , name = " kl_divergence" ,
28182745 dtype = NULL )
28192746{
2820- args <- capture_args(list (y_true = function (x )
2821- if (is_py_object(x ))
2822- x
2823- else np_array(x ), y_pred = function (x )
2824- if (is_py_object(x ))
2825- x
2826- else np_array(x )))
2747+ args <- capture_args(list (y_true = as_py_array , y_pred = as_py_array ))
28272748 callable <- if (missing(y_true ) && missing(y_pred ))
28282749 keras $ metrics $ KLDivergence
28292750 else keras $ metrics $ kl_divergence
@@ -2895,13 +2816,7 @@ function (y_true, y_pred, ..., name = "kl_divergence",
28952816metric_poisson <-
28962817function (y_true , y_pred , ... , name = " poisson" , dtype = NULL )
28972818{
2898- args <- capture_args(list (y_true = function (x )
2899- if (is_py_object(x ))
2900- x
2901- else np_array(x ), y_pred = function (x )
2902- if (is_py_object(x ))
2903- x
2904- else np_array(x )))
2819+ args <- capture_args(list (y_true = as_py_array , y_pred = as_py_array ))
29052820 callable <- if (missing(y_true ) && missing(y_pred ))
29062821 keras $ metrics $ Poisson
29072822 else keras $ metrics $ poisson
@@ -2994,13 +2909,10 @@ function (y_true, y_pred, from_logits = FALSE, ignore_class = NULL,
29942909 axis = - 1L , ... , name = " sparse_categorical_crossentropy" ,
29952910 dtype = NULL )
29962911{
2997- args <- capture_args(list (axis = as_axis , y_true = function (x )
2998- if (is_py_object(x ))
2999- x
3000- else np_array(x ), y_pred = function (x )
3001- if (is_py_object(x ))
3002- x
3003- else np_array(x ), ignore_class = as_integer ))
2912+ args <- capture_args(list (axis = as_axis ,
2913+ ignore_class = as_integer ,
2914+ y_true = as_py_array ,
2915+ y_pred = as_py_array ))
30042916 callable <- if (missing(y_true ) && missing(y_pred ))
30052917 keras $ metrics $ SparseCategoricalCrossentropy
30062918 else keras $ metrics $ sparse_categorical_crossentropy
@@ -3345,13 +3257,7 @@ metric_mean_absolute_error <-
33453257function (y_true , y_pred , ... , name = " mean_absolute_error" ,
33463258 dtype = NULL )
33473259{
3348- args <- capture_args(list (y_true = function (x )
3349- if (is_py_object(x ))
3350- x
3351- else np_array(x ), y_pred = function (x )
3352- if (is_py_object(x ))
3353- x
3354- else np_array(x )))
3260+ args <- capture_args(list (y_true = as_py_array , y_pred = as_py_array ))
33553261 callable <- if (missing(y_true ) && missing(y_pred ))
33563262 keras $ metrics $ MeanAbsoluteError
33573263 else keras $ metrics $ mean_absolute_error
@@ -3424,13 +3330,8 @@ metric_mean_absolute_percentage_error <-
34243330function (y_true , y_pred , ... , name = " mean_absolute_percentage_error" ,
34253331 dtype = NULL )
34263332{
3427- args <- capture_args(list (y_true = function (x )
3428- if (is_py_object(x ))
3429- x
3430- else np_array(x ), y_pred = function (x )
3431- if (is_py_object(x ))
3432- x
3433- else np_array(x )))
3333+ args <- capture_args(list (y_true = as_py_array ,
3334+ y_pred = as_py_array ))
34343335 callable <- if (missing(y_true ) && missing(y_pred ))
34353336 keras $ metrics $ MeanAbsolutePercentageError
34363337 else keras $ metrics $ mean_absolute_percentage_error
@@ -3484,13 +3385,8 @@ metric_mean_squared_error <-
34843385function (y_true , y_pred , ... , name = " mean_squared_error" ,
34853386 dtype = NULL )
34863387{
3487- args <- capture_args(list (y_true = function (x )
3488- if (is_py_object(x ))
3489- x
3490- else np_array(x ), y_pred = function (x )
3491- if (is_py_object(x ))
3492- x
3493- else np_array(x )))
3388+ args <- capture_args(list (y_true = as_py_array ,
3389+ y_pred = as_py_array ))
34943390 callable <- if (missing(y_true ) && missing(y_pred ))
34953391 keras $ metrics $ MeanSquaredError
34963392 else keras $ metrics $ mean_squared_error
@@ -3563,13 +3459,8 @@ metric_mean_squared_logarithmic_error <-
35633459function (y_true , y_pred , ... , name = " mean_squared_logarithmic_error" ,
35643460 dtype = NULL )
35653461{
3566- args <- capture_args(list (y_true = function (x )
3567- if (is_py_object(x ))
3568- x
3569- else np_array(x ), y_pred = function (x )
3570- if (is_py_object(x ))
3571- x
3572- else np_array(x )))
3462+ args <- capture_args(list (y_true = as_py_array ,
3463+ y_pred = as_py_array ))
35733464 callable <- if (missing(y_true ) && missing(y_pred ))
35743465 keras $ metrics $ MeanSquaredLogarithmicError
35753466 else keras $ metrics $ mean_squared_logarithmic_error
0 commit comments