@@ -33,9 +33,6 @@ edit the string below to `"jax"` or `"torch"` and hit
3333This entire guide is backend-agnostic.
3434
3535
36-
37-
38-
3936``` r
4037library(tensorflow , exclude = c(" shape" , " set_random_seed" ))
4138library(keras3 )
@@ -181,25 +178,25 @@ model |> fit(
181178
182179```
183180## Epoch 1/10
184- ## 399/399 - 7s - 16ms /step - acc: 0.7495 - loss: 0.7390 - val_acc: 0.9644 - val_loss: 0.1219
181+ ## 399/399 - 8s - 20ms /step - acc: 0.7476 - loss: 0.7467 - val_acc: 0.9663 - val_loss: 0.1179
185182## Epoch 2/10
186- ## 399/399 - 2s - 5ms/step - acc: 0.9384 - loss: 0.2051 - val_acc: 0.9758 - val_loss: 0.0794
183+ ## 399/399 - 2s - 5ms/step - acc: 0.9384 - loss: 0.2066 - val_acc: 0.9770 - val_loss: 0.0765
187184## Epoch 3/10
188- ## 399/399 - 2s - 5ms/step - acc: 0.9567 - loss: 0.1468 - val_acc: 0.9809 - val_loss: 0.0632
185+ ## 399/399 - 2s - 5ms/step - acc: 0.9569 - loss: 0.1467 - val_acc: 0.9817 - val_loss: 0.0622
189186## Epoch 4/10
190- ## 399/399 - 2s - 5ms/step - acc: 0.9656 - loss: 0.1167 - val_acc: 0.9857 - val_loss: 0.0479
187+ ## 399/399 - 2s - 5ms/step - acc: 0.9652 - loss: 0.1170 - val_acc: 0.9860 - val_loss: 0.0499
191188## Epoch 5/10
192- ## 399/399 - 2s - 5ms/step - acc: 0.9716 - loss: 0.0984 - val_acc: 0.9883 - val_loss: 0.0427
189+ ## 399/399 - 2s - 5ms/step - acc: 0.9709 - loss: 0.0999 - val_acc: 0.9873 - val_loss: 0.0447
193190## Epoch 6/10
194- ## 399/399 - 2s - 5ms/step - acc: 0.9756 - loss: 0.0852 - val_acc: 0.9879 - val_loss: 0.0412
191+ ## 399/399 - 2s - 5ms/step - acc: 0.9752 - loss: 0.0863 - val_acc: 0.9877 - val_loss: 0.0400
195192## Epoch 7/10
196- ## 399/399 - 2s - 5ms/step - acc: 0.9765 - loss: 0.0786 - val_acc: 0.9894 - val_loss: 0.0394
193+ ## 399/399 - 2s - 5ms/step - acc: 0.9764 - loss: 0.0787 - val_acc: 0.9890 - val_loss: 0.0395
197194## Epoch 8/10
198- ## 399/399 - 2s - 5ms/step - acc: 0.9794 - loss: 0.0672 - val_acc: 0.9884 - val_loss: 0.0415
195+ ## 399/399 - 2s - 5ms/step - acc: 0.9794 - loss: 0.0678 - val_acc: 0.9874 - val_loss: 0.0432
199196## Epoch 9/10
200- ## 399/399 - 2s - 5ms/step - acc: 0.9808 - loss: 0.0647 - val_acc: 0.9901 - val_loss: 0.0369
197+ ## 399/399 - 2s - 5ms/step - acc: 0.9802 - loss: 0.0658 - val_acc: 0.9894 - val_loss: 0.0395
201198## Epoch 10/10
202- ## 399/399 - 2s - 5ms/step - acc: 0.9836 - loss: 0.0571 - val_acc: 0.9911 - val_loss: 0.0325
199+ ## 399/399 - 2s - 5ms/step - acc: 0.9825 - loss: 0.0584 - val_acc: 0.9914 - val_loss: 0.0342
203200```
204201
205202``` r
@@ -230,7 +227,7 @@ predictions <- model |> predict(x_test)
230227```
231228
232229```
233- ## 313/313 - 1s - 2ms/step
230+ ## 313/313 - 0s - 2ms/step
234231```
235232
236233``` r
@@ -365,7 +362,7 @@ model |> fit(
365362```
366363
367364```
368- ## 399/399 - 6s - 15ms/step - acc: 0.7355 - loss: 0.7722 - val_acc: 0.9272 - val_loss: 0.2380
365+ ## 399/399 - 6s - 15ms/step - acc: 0.7343 - loss: 0.7741 - val_acc: 0.9269 - val_loss: 0.2399
369366```
370367
371368## Training models on arbitrary data sources
@@ -442,7 +439,7 @@ model |> fit(train_dataset, epochs = 1, validation_data = test_dataset)
442439```
443440
444441```
445- ## 469/469 - 7s - 15ms /step - acc: 0.7492 - loss: 0.7481 - val_acc: 0.9112 - val_loss: 0.3002
442+ ## 469/469 - 7s - 14ms /step - acc: 0.7499 - loss: 0.7454 - val_acc: 0.9051 - val_loss: 0.3089
446443```
447444
448445## Further reading
0 commit comments