Skip to content

Commit 7a02a57

Browse files
committed
reknit guides
1 parent 83964e6 commit 7a02a57

15 files changed

+130
-110
lines changed

man/layer_tfsm.Rd

Lines changed: 2 additions & 2 deletions
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

vignettes-src/distribution.Rmd

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -213,7 +213,7 @@ layout_map["d1/bias"] <- tuple("model")
213213
layout_map["d2/output"] <- tuple("data", NULL)
214214
215215
model_parallel <- keras$distribution$ModelParallel(
216-
layout_map, batch_dim_name = "data"
216+
layout_map = layout_map, batch_dim_name = "data"
217217
)
218218
219219
keras$distribution$set_distribution(model_parallel)

vignettes-src/training_with_built_in_methods.Rmd

Lines changed: 13 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -967,7 +967,7 @@ model |> compile(
967967
optimizer = optimizer_rmsprop(1e-3),
968968
loss = list(
969969
loss_mean_squared_error(),
970-
loss_categorical_crossentropy()
970+
loss_binary_crossentropy()
971971
)
972972
)
973973
@@ -986,6 +986,18 @@ model |> fit(
986986
)
987987
988988
# Alternatively, fit on named lists (names matching)
989+
model <- keras_model(
990+
inputs = list(image_input, timeseries_input),
991+
outputs = list(score_output = score_output,
992+
class_output = class_output)
993+
) |> compile(
994+
optimizer = optimizer_rmsprop(1e-3),
995+
loss = list(
996+
loss_mean_squared_error(),
997+
loss_binary_crossentropy()
998+
)
999+
)
1000+
9891001
model |> fit(
9901002
list(img_input = img_data, ts_input = ts_data),
9911003
list(score_output = score_targets, class_output = class_targets),

vignettes/custom_train_step_in_tensorflow.Rmd

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -127,11 +127,11 @@ model |> fit(x, y, epochs = 3)
127127

128128
```
129129
## Epoch 1/3
130-
## 32/32 - 1s - 23ms/step - loss: 2.9118 - mae: 1.3597
130+
## 32/32 - 1s - 23ms/step - loss: 3.2271 - mae: 1.4339
131131
## Epoch 2/3
132-
## 32/32 - 0s - 1ms/step - loss: 2.6026 - mae: 1.2856
132+
## 32/32 - 0s - 1ms/step - loss: 2.9034 - mae: 1.3605
133133
## Epoch 3/3
134-
## 32/32 - 0s - 1ms/step - loss: 2.3378 - mae: 1.2193
134+
## 32/32 - 0s - 1ms/step - loss: 2.6272 - mae: 1.2960
135135
```
136136

137137
## Going lower-level
@@ -212,11 +212,11 @@ model |> fit(x, y, epochs = 3)
212212

213213
```
214214
## Epoch 1/3
215-
## 32/32 - 1s - 20ms/step - loss: 2.6540 - mae: 1.2901
215+
## 32/32 - 1s - 22ms/step - loss: 2.5170 - mae: 1.2923
216216
## Epoch 2/3
217-
## 32/32 - 0s - 1ms/step - loss: 2.4139 - mae: 1.2303
217+
## 32/32 - 0s - 1ms/step - loss: 2.2689 - mae: 1.2241
218218
## Epoch 3/3
219-
## 32/32 - 0s - 1ms/step - loss: 2.2080 - mae: 1.1761
219+
## 32/32 - 0s - 1ms/step - loss: 2.0578 - mae: 1.1633
220220
```
221221

222222
## Supporting `sample_weight` & `class_weight`
@@ -282,11 +282,11 @@ model |> fit(x, y, sample_weight = sw, epochs = 3)
282282

283283
```
284284
## Epoch 1/3
285-
## 32/32 - 1s - 25ms/step - loss: 0.1607 - mae: 1.3018
285+
## 32/32 - 1s - 26ms/step - loss: 0.1681 - mae: 1.3434
286286
## Epoch 2/3
287-
## 32/32 - 0s - 1ms/step - loss: 0.1452 - mae: 1.2999
287+
## 32/32 - 0s - 9ms/step - loss: 0.1394 - mae: 1.3364
288288
## Epoch 3/3
289-
## 32/32 - 0s - 1ms/step - loss: 0.1335 - mae: 1.2986
289+
## 32/32 - 0s - 1ms/step - loss: 0.1148 - mae: 1.3286
290290
```
291291

292292
## Providing your own evaluation step
@@ -332,15 +332,15 @@ model |> evaluate(x, y)
332332
```
333333

334334
```
335-
## 32/32 - 0s - 9ms/step - loss: 0.0000e+00 - mae: 1.3947
335+
## 32/32 - 0s - 10ms/step - loss: 0.0000e+00 - mae: 1.3871
336336
```
337337

338338
```
339339
## $loss
340340
## [1] 0
341341
##
342342
## $mae
343-
## [1] 1.394695
343+
## [1] 1.387149
344344
```
345345

346346
## Wrapping up: an end-to-end GAN example
@@ -507,7 +507,7 @@ gan |> fit(
507507
```
508508

509509
```
510-
## 100/100 - 5s - 51ms/step - d_loss: 0.0000e+00 - g_loss: 0.0000e+00
510+
## 100/100 - 5s - 54ms/step - d_loss: 0.0000e+00 - g_loss: 0.0000e+00
511511
```
512512

513513
The ideas behind deep learning are simple, so why should their implementation be painful?

vignettes/distributed_training_with_tensorflow.Rmd

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -193,18 +193,18 @@ with(strategy$scope(), {
193193

194194
```
195195
## Epoch 1/2
196-
## 782/782 - 7s - 9ms/step - loss: 3.0622 - sparse_categorical_accuracy: 0.8615 - val_loss: 1.1367 - val_sparse_categorical_accuracy: 0.9006
196+
## 782/782 - 4s - 6ms/step - loss: 2.1409 - sparse_categorical_accuracy: 0.8896 - val_loss: 0.7223 - val_sparse_categorical_accuracy: 0.9216
197197
## Epoch 2/2
198-
## 782/782 - 4s - 5ms/step - loss: 0.5774 - sparse_categorical_accuracy: 0.9259 - val_loss: 0.6612 - val_sparse_categorical_accuracy: 0.9210
199-
## 157/157 - 1s - 3ms/step - loss: 0.6729 - sparse_categorical_accuracy: 0.9150
198+
## 782/782 - 3s - 4ms/step - loss: 0.4292 - sparse_categorical_accuracy: 0.9387 - val_loss: 0.3693 - val_sparse_categorical_accuracy: 0.9404
199+
## 157/157 - 0s - 2ms/step - loss: 0.3976 - sparse_categorical_accuracy: 0.9386
200200
```
201201

202202
```
203203
## $loss
204-
## [1] 0.6728871
204+
## [1] 0.3976028
205205
##
206206
## $sparse_categorical_accuracy
207-
## [1] 0.915
207+
## [1] 0.9386
208208
```
209209

210210
## Using callbacks to ensure fault tolerance
@@ -274,7 +274,7 @@ run_training(epochs = 1)
274274
```
275275

276276
```
277-
## 782/782 - 3s - 4ms/step - loss: 0.2194 - sparse_categorical_accuracy: 0.9532 - val_loss: 0.3217 - val_sparse_categorical_accuracy: 0.9456
277+
## 782/782 - 4s - 5ms/step - loss: 0.1485 - sparse_categorical_accuracy: 0.9627 - val_loss: 0.2062 - val_sparse_categorical_accuracy: 0.9560
278278
```
279279

280280
``` r
@@ -283,7 +283,7 @@ run_training(epochs = 1)
283283
```
284284

285285
```
286-
## 782/782 - 3s - 4ms/step - loss: 0.1876 - sparse_categorical_accuracy: 0.9584 - val_loss: 0.3629 - val_sparse_categorical_accuracy: 0.9396
286+
## 782/782 - 4s - 5ms/step - loss: 0.1227 - sparse_categorical_accuracy: 0.9673 - val_loss: 0.2007 - val_sparse_categorical_accuracy: 0.9602
287287
```
288288

289289
## `tf$data` performance tips

vignettes/distribution.Rmd

Lines changed: 11 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -184,24 +184,24 @@ model |> fit(dataset, epochs = 3)
184184

185185
```
186186
## Epoch 1/3
187-
## 8/8 - 0s - 37ms/step - loss: 1.0629
187+
## 8/8 - 0s - 38ms/step - loss: 1.0768
188188
## Epoch 2/3
189-
## 8/8 - 0s - 4ms/step - loss: 0.9712
189+
## 8/8 - 0s - 6ms/step - loss: 0.9754
190190
## Epoch 3/3
191-
## 8/8 - 0s - 5ms/step - loss: 0.9322
191+
## 8/8 - 0s - 5ms/step - loss: 0.9347
192192
```
193193

194194
``` r
195195
model |> evaluate(dataset)
196196
```
197197

198198
```
199-
## 8/8 - 0s - 7ms/step - loss: 0.8859
199+
## 8/8 - 0s - 7ms/step - loss: 0.8936
200200
```
201201

202202
```
203203
## $loss
204-
## [1] 0.8858577
204+
## [1] 0.8935966
205205
```
206206

207207

@@ -253,8 +253,7 @@ layout_map["d1/bias"] <- tuple("model")
253253
layout_map["d2/output"] <- tuple("data", NULL)
254254

255255
model_parallel <- keras$distribution$ModelParallel(
256-
layout_map = layout_map,
257-
batch_dim_name = "data"
256+
layout_map = layout_map, batch_dim_name = "data"
258257
)
259258

260259
keras$distribution$set_distribution(model_parallel)
@@ -279,24 +278,24 @@ model |> fit(dataset, epochs = 3)
279278

280279
```
281280
## Epoch 1/3
282-
## 8/8 - 0s - 29ms/step - loss: 1.0714
281+
## 8/8 - 0s - 29ms/step - loss: 1.0836
283282
## Epoch 2/3
284-
## 8/8 - 0s - 4ms/step - loss: 0.9744
283+
## 8/8 - 0s - 4ms/step - loss: 1.0192
285284
## Epoch 3/3
286-
## 8/8 - 0s - 3ms/step - loss: 0.9280
285+
## 8/8 - 0s - 4ms/step - loss: 0.9821
287286
```
288287

289288
``` r
290289
model |> evaluate(dataset)
291290
```
292291

293292
```
294-
## 8/8 - 0s - 9ms/step - loss: 0.8802
293+
## 8/8 - 0s - 8ms/step - loss: 0.9576
295294
```
296295

297296
```
298297
## $loss
299-
## [1] 0.8802156
298+
## [1] 0.9576273
300299
```
301300

302301

vignettes/functional_api.Rmd

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -208,17 +208,17 @@ history <- model |> fit(
208208

209209
```
210210
## Epoch 1/2
211-
## 750/750 - 2s - 2ms/step - accuracy: 0.8979 - loss: 0.3540 - val_accuracy: 0.9448 - val_loss: 0.1903
211+
## 750/750 - 2s - 3ms/step - accuracy: 0.8979 - loss: 0.3540 - val_accuracy: 0.9448 - val_loss: 0.1903
212212
## Epoch 2/2
213-
## 750/750 - 1s - 801us/step - accuracy: 0.9511 - loss: 0.1634 - val_accuracy: 0.9605 - val_loss: 0.1386
213+
## 750/750 - 1s - 784us/step - accuracy: 0.9509 - loss: 0.1635 - val_accuracy: 0.9597 - val_loss: 0.1397
214214
```
215215

216216
``` r
217217
test_scores <- model |> evaluate(x_test, y_test, verbose=2)
218218
```
219219

220220
```
221-
## 313/313 - 0s - 1ms/step - accuracy: 0.9593 - loss: 0.1323
221+
## 313/313 - 0s - 1ms/step - accuracy: 0.9595 - loss: 0.1328
222222
```
223223

224224

@@ -229,8 +229,8 @@ cat("Test accuracy:", test_scores$accuracy, "\n")
229229
```
230230

231231
```
232-
## Test loss: 0.1323339
233-
## Test accuracy: 0.9593
232+
## Test loss: 0.132778
233+
## Test accuracy: 0.9595
234234
```
235235

236236
For further reading, see the [training and evaluation](training_with_built_in_methods.html) guide.
@@ -643,9 +643,9 @@ model |> fit(
643643

644644
```
645645
## Epoch 1/2
646-
## 40/40 - 2s - 62ms/step - loss: 348.4560
646+
## 40/40 - 3s - 66ms/step - department_loss: 381.0319 - loss: 498.7886 - priority_loss: 117.7568
647647
## Epoch 2/2
648-
## 40/40 - 0s - 6ms/step - loss: 255.0283
648+
## 40/40 - 0s - 10ms/step - department_loss: 358.5705 - loss: 438.4252 - priority_loss: 79.8546
649649
```
650650

651651
When calling fit with a `Dataset` object, it should yield either a
@@ -776,7 +776,7 @@ model |> fit(
776776
```
777777

778778
```
779-
## 13/13 - 5s - 364ms/step - acc: 0.1312 - loss: 2.3010 - val_acc: 0.1200 - val_loss: 2.2964
779+
## 13/13 - 5s - 375ms/step - acc: 0.1250 - loss: 2.3001 - val_acc: 0.1400 - val_loss: 2.2938
780780
```
781781

782782
## Shared layers

vignettes/getting_started.Rmd

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -196,15 +196,15 @@ model |> evaluate(x_test, y_test)
196196
```
197197

198198
```
199-
## 313/313 - 1s - 3ms/step - accuracy: 0.9806 - loss: 0.0880
199+
## 313/313 - 1s - 2ms/step - accuracy: 0.9816 - loss: 0.0847
200200
```
201201

202202
```
203203
## $accuracy
204-
## [1] 0.9806
204+
## [1] 0.9816
205205
##
206206
## $loss
207-
## [1] 0.08797418
207+
## [1] 0.08465149
208208
```
209209

210210
Generate predictions on new data:
@@ -223,7 +223,7 @@ max.col(probs) - 1L
223223
```
224224

225225
```
226-
## [1] 7 2 1 0 4 1 4 9 6 9 0 6 9 0 1 5 9 7 3 4 9 6 6 5 4 0 7 4 0 1 3 1 3 4 7
226+
## [1] 7 2 1 0 4 1 4 9 5 9 0 6 9 0 1 5 9 7 3 4 9 6 6 5 4 0 7 4 0 1 3 1 3 4 7
227227
## [36] 2 7 1 2 1 1 7 4 2 3 5 1 2 4 4 6 3 5 5 6 0 4 1 9 5 7 8 9 3 7 4 6 4 3 0
228228
## [71] 7 0 2 9 1 7 3 2 9 7 7 6 2 7 8 4 7 3 6 1 3 6 9 3 1 4 1 7 6 9
229229
## [ reached getOption("max.print") -- omitted 9900 entries ]
1.52 KB
Loading

vignettes/intro_to_keras_for_engineers.Rmd

Lines changed: 13 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -33,9 +33,6 @@ edit the string below to `"jax"` or `"torch"` and hit
3333
This entire guide is backend-agnostic.
3434

3535

36-
37-
38-
3936
``` r
4037
library(tensorflow, exclude = c("shape", "set_random_seed"))
4138
library(keras3)
@@ -181,25 +178,25 @@ model |> fit(
181178

182179
```
183180
## Epoch 1/10
184-
## 399/399 - 7s - 16ms/step - acc: 0.7495 - loss: 0.7390 - val_acc: 0.9644 - val_loss: 0.1219
181+
## 399/399 - 8s - 20ms/step - acc: 0.7476 - loss: 0.7467 - val_acc: 0.9663 - val_loss: 0.1179
185182
## Epoch 2/10
186-
## 399/399 - 2s - 5ms/step - acc: 0.9384 - loss: 0.2051 - val_acc: 0.9758 - val_loss: 0.0794
183+
## 399/399 - 2s - 5ms/step - acc: 0.9384 - loss: 0.2066 - val_acc: 0.9770 - val_loss: 0.0765
187184
## Epoch 3/10
188-
## 399/399 - 2s - 5ms/step - acc: 0.9567 - loss: 0.1468 - val_acc: 0.9809 - val_loss: 0.0632
185+
## 399/399 - 2s - 5ms/step - acc: 0.9569 - loss: 0.1467 - val_acc: 0.9817 - val_loss: 0.0622
189186
## Epoch 4/10
190-
## 399/399 - 2s - 5ms/step - acc: 0.9656 - loss: 0.1167 - val_acc: 0.9857 - val_loss: 0.0479
187+
## 399/399 - 2s - 5ms/step - acc: 0.9652 - loss: 0.1170 - val_acc: 0.9860 - val_loss: 0.0499
191188
## Epoch 5/10
192-
## 399/399 - 2s - 5ms/step - acc: 0.9716 - loss: 0.0984 - val_acc: 0.9883 - val_loss: 0.0427
189+
## 399/399 - 2s - 5ms/step - acc: 0.9709 - loss: 0.0999 - val_acc: 0.9873 - val_loss: 0.0447
193190
## Epoch 6/10
194-
## 399/399 - 2s - 5ms/step - acc: 0.9756 - loss: 0.0852 - val_acc: 0.9879 - val_loss: 0.0412
191+
## 399/399 - 2s - 5ms/step - acc: 0.9752 - loss: 0.0863 - val_acc: 0.9877 - val_loss: 0.0400
195192
## Epoch 7/10
196-
## 399/399 - 2s - 5ms/step - acc: 0.9765 - loss: 0.0786 - val_acc: 0.9894 - val_loss: 0.0394
193+
## 399/399 - 2s - 5ms/step - acc: 0.9764 - loss: 0.0787 - val_acc: 0.9890 - val_loss: 0.0395
197194
## Epoch 8/10
198-
## 399/399 - 2s - 5ms/step - acc: 0.9794 - loss: 0.0672 - val_acc: 0.9884 - val_loss: 0.0415
195+
## 399/399 - 2s - 5ms/step - acc: 0.9794 - loss: 0.0678 - val_acc: 0.9874 - val_loss: 0.0432
199196
## Epoch 9/10
200-
## 399/399 - 2s - 5ms/step - acc: 0.9808 - loss: 0.0647 - val_acc: 0.9901 - val_loss: 0.0369
197+
## 399/399 - 2s - 5ms/step - acc: 0.9802 - loss: 0.0658 - val_acc: 0.9894 - val_loss: 0.0395
201198
## Epoch 10/10
202-
## 399/399 - 2s - 5ms/step - acc: 0.9836 - loss: 0.0571 - val_acc: 0.9911 - val_loss: 0.0325
199+
## 399/399 - 2s - 5ms/step - acc: 0.9825 - loss: 0.0584 - val_acc: 0.9914 - val_loss: 0.0342
203200
```
204201

205202
``` r
@@ -230,7 +227,7 @@ predictions <- model |> predict(x_test)
230227
```
231228

232229
```
233-
## 313/313 - 1s - 2ms/step
230+
## 313/313 - 0s - 2ms/step
234231
```
235232

236233
``` r
@@ -365,7 +362,7 @@ model |> fit(
365362
```
366363

367364
```
368-
## 399/399 - 6s - 15ms/step - acc: 0.7355 - loss: 0.7722 - val_acc: 0.9272 - val_loss: 0.2380
365+
## 399/399 - 6s - 15ms/step - acc: 0.7343 - loss: 0.7741 - val_acc: 0.9269 - val_loss: 0.2399
369366
```
370367

371368
## Training models on arbitrary data sources
@@ -442,7 +439,7 @@ model |> fit(train_dataset, epochs = 1, validation_data = test_dataset)
442439
```
443440

444441
```
445-
## 469/469 - 7s - 15ms/step - acc: 0.7492 - loss: 0.7481 - val_acc: 0.9112 - val_loss: 0.3002
442+
## 469/469 - 7s - 14ms/step - acc: 0.7499 - loss: 0.7454 - val_acc: 0.9051 - val_loss: 0.3089
446443
```
447444

448445
## Further reading

0 commit comments

Comments
 (0)