Skip to content

Commit 82d27e2

Browse files
committed
rerender guides
1 parent 1cec763 commit 82d27e2

11 files changed

+163
-159
lines changed

vignettes/custom_train_step_in_tensorflow.Rmd

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -127,11 +127,11 @@ model |> fit(x, y, epochs = 3)
127127

128128
```
129129
## Epoch 1/3
130-
## 32/32 - 0s - 6ms/step - loss: 2.9118 - mae: 1.3597
130+
## 32/32 - 1s - 33ms/step - loss: 2.9118 - mae: 1.3597
131131
## Epoch 2/3
132-
## 32/32 - 0s - 513us/step - loss: 2.6026 - mae: 1.2856
132+
## 32/32 - 0s - 1ms/step - loss: 2.6026 - mae: 1.2856
133133
## Epoch 3/3
134-
## 32/32 - 0s - 509us/step - loss: 2.3378 - mae: 1.2193
134+
## 32/32 - 0s - 1ms/step - loss: 2.3378 - mae: 1.2193
135135
```
136136

137137
## Going lower-level
@@ -212,11 +212,11 @@ model |> fit(x, y, epochs = 3)
212212

213213
```
214214
## Epoch 1/3
215-
## 32/32 - 0s - 5ms/step - loss: 2.6540 - mae: 1.2901
215+
## 32/32 - 1s - 23ms/step - loss: 2.6540 - mae: 1.2901
216216
## Epoch 2/3
217-
## 32/32 - 0s - 527us/step - loss: 2.4139 - mae: 1.2303
217+
## 32/32 - 0s - 1ms/step - loss: 2.4139 - mae: 1.2303
218218
## Epoch 3/3
219-
## 32/32 - 0s - 522us/step - loss: 2.2080 - mae: 1.1761
219+
## 32/32 - 0s - 1ms/step - loss: 2.2080 - mae: 1.1761
220220
```
221221

222222
## Supporting `sample_weight` & `class_weight`
@@ -282,11 +282,11 @@ model |> fit(x, y, sample_weight = sw, epochs = 3)
282282

283283
```
284284
## Epoch 1/3
285-
## 32/32 - 0s - 7ms/step - loss: 0.1607 - mae: 1.3018
285+
## 32/32 - 1s - 24ms/step - loss: 0.1607 - mae: 1.3018
286286
## Epoch 2/3
287-
## 32/32 - 0s - 540us/step - loss: 0.1452 - mae: 1.2999
287+
## 32/32 - 0s - 1ms/step - loss: 0.1452 - mae: 1.2999
288288
## Epoch 3/3
289-
## 32/32 - 0s - 529us/step - loss: 0.1335 - mae: 1.2986
289+
## 32/32 - 0s - 1ms/step - loss: 0.1335 - mae: 1.2986
290290
```
291291

292292
## Providing your own evaluation step
@@ -332,7 +332,7 @@ model |> evaluate(x, y)
332332
```
333333

334334
```
335-
## 32/32 - 0s - 2ms/step - loss: 0.0000e+00 - mae: 1.3947
335+
## 32/32 - 0s - 11ms/step - loss: 0.0000e+00 - mae: 1.3947
336336
```
337337

338338
```
@@ -507,7 +507,7 @@ gan |> fit(
507507
```
508508

509509
```
510-
## 100/100 - 21s - 206ms/step - d_loss: 0.0000e+00 - g_loss: 0.0000e+00
510+
## 100/100 - 7s - 70ms/step - d_loss: 0.0000e+00 - g_loss: 0.0000e+00
511511
```
512512

513513
The ideas behind deep learning are simple, so why should their implementation be painful?

vignettes/distributed_training_with_tensorflow.Rmd

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -115,7 +115,7 @@ Here's a simple end-to-end runnable example:
115115

116116
```r
117117
get_compiled_model <- function() {
118-
inputs <- layer_input(shape = 784)
118+
inputs <- keras_input(shape = 784)
119119
outputs <- inputs |>
120120
layer_dense(units = 256, activation = "relu") |>
121121
layer_dense(units = 256, activation = "relu") |>
@@ -195,7 +195,7 @@ with(strategy$scope(), {
195195
## Epoch 1/2
196196
## 782/782 - 7s - 9ms/step - loss: 2.9199 - sparse_categorical_accuracy: 0.8580 - val_loss: 0.9377 - val_sparse_categorical_accuracy: 0.8986
197197
## Epoch 2/2
198-
## 782/782 - 3s - 4ms/step - loss: 0.5622 - sparse_categorical_accuracy: 0.9254 - val_loss: 0.7505 - val_sparse_categorical_accuracy: 0.9044
198+
## 782/782 - 4s - 5ms/step - loss: 0.5622 - sparse_categorical_accuracy: 0.9254 - val_loss: 0.7505 - val_sparse_categorical_accuracy: 0.9044
199199
## 157/157 - 0s - 3ms/step - loss: 0.8129 - sparse_categorical_accuracy: 0.9042
200200
```
201201

@@ -274,7 +274,7 @@ run_training(epochs = 1)
274274
```
275275

276276
```
277-
## 782/782 - 4s - 5ms/step - loss: 0.5186 - sparse_categorical_accuracy: 0.9351 - val_loss: 0.7081 - val_sparse_categorical_accuracy: 0.9184
277+
## 782/782 - 6s - 8ms/step - loss: 3.3305 - sparse_categorical_accuracy: 0.8592 - val_loss: 1.1806 - val_sparse_categorical_accuracy: 0.8930
278278
```
279279

280280
```r
@@ -283,7 +283,7 @@ run_training(epochs = 1)
283283
```
284284

285285
```
286-
## 782/782 - 4s - 5ms/step - loss: 0.3189 - sparse_categorical_accuracy: 0.9476 - val_loss: 0.5234 - val_sparse_categorical_accuracy: 0.9382
286+
## 782/782 - 4s - 5ms/step - loss: 0.6629 - sparse_categorical_accuracy: 0.9215 - val_loss: 0.8294 - val_sparse_categorical_accuracy: 0.9130
287287
```
288288

289289
## `tf$data` performance tips

vignettes/functional_api.Rmd

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -149,7 +149,7 @@ You can also plot the model as a graph:
149149
plot(model)
150150
```
151151

152-
<img src="functional_api/unnamed-chunk-10-1.png" width="155" />
152+
<img src="functional_api/unnamed-chunk-10-1.png" width="176" />
153153

154154
And, optionally, display the input and output shapes of each layer
155155
in the plotted graph:
@@ -159,7 +159,7 @@ in the plotted graph:
159159
plot(model, show_shapes = TRUE)
160160
```
161161

162-
<img src="functional_api/unnamed-chunk-11-1.png" width="261" />
162+
<img src="functional_api/unnamed-chunk-11-1.png" width="311" />
163163

164164
This figure and the code are almost identical. In the code version,
165165
the connection arrows are replaced by the call operation.
@@ -202,17 +202,17 @@ history <- model |> fit(
202202

203203
```
204204
## Epoch 1/2
205-
## 750/750 - 1s - 1ms/step - accuracy: 0.9015 - loss: 0.3513 - val_accuracy: 0.9442 - val_loss: 0.1921
205+
## 750/750 - 2s - 3ms/step - accuracy: 0.9015 - loss: 0.3513 - val_accuracy: 0.9442 - val_loss: 0.1921
206206
## Epoch 2/2
207-
## 750/750 - 1s - 699us/step - accuracy: 0.9508 - loss: 0.1643 - val_accuracy: 0.9581 - val_loss: 0.1423
207+
## 750/750 - 1s - 1ms/step - accuracy: 0.9508 - loss: 0.1643 - val_accuracy: 0.9581 - val_loss: 0.1423
208208
```
209209

210210
```r
211211
test_scores <- model |> evaluate(x_test, y_test, verbose=2)
212212
```
213213

214214
```
215-
## 313/313 - 0s - 335us/step - accuracy: 0.9578 - loss: 0.1338
215+
## 313/313 - 0s - 2ms/step - accuracy: 0.9578 - loss: 0.1338
216216
```
217217

218218

@@ -581,7 +581,7 @@ Now plot the model:
581581
plot(model, show_shapes = TRUE)
582582
```
583583

584-
<img src="functional_api/unnamed-chunk-20-1.png" width="851" />
584+
<img src="functional_api/unnamed-chunk-20-1.png" width="1008" />
585585

586586
When compiling this model, you can assign different losses to each output.
587587
You can even assign different weights to each loss -- to modulate
@@ -637,9 +637,9 @@ model |> fit(
637637

638638
```
639639
## Epoch 1/2
640-
## 40/40 - 2s - 39ms/step - loss: 0.3948
640+
## 40/40 - 3s - 68ms/step - loss: 0.3948
641641
## Epoch 2/2
642-
## 40/40 - 1s - 16ms/step - loss: 0.1971
642+
## 40/40 - 0s - 5ms/step - loss: 0.1971
643643
```
644644

645645
When calling fit with a `Dataset` object, it should yield either a
@@ -741,7 +741,7 @@ Plot the model:
741741
plot(model, show_shapes = TRUE)
742742
```
743743

744-
<img src="functional_api/unnamed-chunk-25-1.png" width="389" />
744+
<img src="functional_api/unnamed-chunk-25-1.png" width="468" />
745745

746746
Now train the model:
747747

@@ -770,7 +770,7 @@ model |> fit(
770770
```
771771

772772
```
773-
## 13/13 - 1s - 93ms/step - acc: 0.1238 - loss: 2.3109 - val_acc: 0.1150 - val_loss: 2.3210
773+
## 13/13 - 9s - 674ms/step - acc: 0.1325 - loss: 2.3035 - val_acc: 0.1150 - val_loss: 2.3076
774774
```
775775

776776
## Shared layers

vignettes/getting_started.Rmd

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -196,15 +196,15 @@ model |> evaluate(x_test, y_test)
196196
```
197197

198198
```
199-
## 313/313 - 0s - 431us/step - accuracy: 0.9825 - loss: 0.0907
199+
## 313/313 - 1s - 3ms/step - accuracy: 0.9816 - loss: 0.0906
200200
```
201201

202202
```
203203
## $accuracy
204-
## [1] 0.9825
204+
## [1] 0.9816
205205
##
206206
## $loss
207-
## [1] 0.09072524
207+
## [1] 0.09057788
208208
```
209209

210210
Generate predictions on new data:
@@ -215,7 +215,7 @@ probs <- model |> predict(x_test)
215215
```
216216

217217
```
218-
## 313/313 - 0s - 494us/step
218+
## 313/313 - 0s - 2ms/step
219219
```
220220

221221
```r
121 Bytes
Loading

vignettes/intro_to_keras_for_engineers.Rmd

Lines changed: 13 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -174,25 +174,25 @@ model |> fit(
174174

175175
```
176176
## Epoch 1/10
177-
## 399/399 - 293s - 734ms/step - acc: 0.7466 - loss: 0.7492 - val_acc: 0.9618 - val_loss: 0.1349
177+
## 399/399 - 10s - 24ms/step - acc: 0.7362 - loss: 0.7750 - val_acc: 0.9622 - val_loss: 0.1377
178178
## Epoch 2/10
179-
## 399/399 - 40s - 100ms/step - acc: 0.9326 - loss: 0.2262 - val_acc: 0.9756 - val_loss: 0.0807
179+
## 399/399 - 2s - 5ms/step - acc: 0.9304 - loss: 0.2354 - val_acc: 0.9702 - val_loss: 0.0983
180180
## Epoch 3/10
181-
## 399/399 - 39s - 98ms/step - acc: 0.9529 - loss: 0.1580 - val_acc: 0.9807 - val_loss: 0.0671
181+
## 399/399 - 2s - 5ms/step - acc: 0.9480 - loss: 0.1740 - val_acc: 0.9791 - val_loss: 0.0685
182182
## Epoch 4/10
183-
## 399/399 - 38s - 95ms/step - acc: 0.9612 - loss: 0.1268 - val_acc: 0.9826 - val_loss: 0.0576
183+
## 399/399 - 2s - 5ms/step - acc: 0.9593 - loss: 0.1395 - val_acc: 0.9848 - val_loss: 0.0545
184184
## Epoch 5/10
185-
## 399/399 - 39s - 98ms/step - acc: 0.9695 - loss: 0.1079 - val_acc: 0.9857 - val_loss: 0.0490
185+
## 399/399 - 2s - 5ms/step - acc: 0.9656 - loss: 0.1179 - val_acc: 0.9872 - val_loss: 0.0451
186186
## Epoch 6/10
187-
## 399/399 - 39s - 98ms/step - acc: 0.9726 - loss: 0.0937 - val_acc: 0.9878 - val_loss: 0.0433
187+
## 399/399 - 2s - 5ms/step - acc: 0.9692 - loss: 0.1026 - val_acc: 0.9868 - val_loss: 0.0466
188188
## Epoch 7/10
189-
## 399/399 - 38s - 95ms/step - acc: 0.9749 - loss: 0.0869 - val_acc: 0.9879 - val_loss: 0.0430
189+
## 399/399 - 2s - 5ms/step - acc: 0.9737 - loss: 0.0916 - val_acc: 0.9890 - val_loss: 0.0394
190190
## Epoch 8/10
191-
## 399/399 - 38s - 96ms/step - acc: 0.9776 - loss: 0.0757 - val_acc: 0.9894 - val_loss: 0.0367
191+
## 399/399 - 2s - 5ms/step - acc: 0.9753 - loss: 0.0834 - val_acc: 0.9898 - val_loss: 0.0357
192192
## Epoch 9/10
193-
## 399/399 - 38s - 95ms/step - acc: 0.9792 - loss: 0.0701 - val_acc: 0.9896 - val_loss: 0.0398
193+
## 399/399 - 2s - 5ms/step - acc: 0.9778 - loss: 0.0750 - val_acc: 0.9910 - val_loss: 0.0313
194194
## Epoch 10/10
195-
## 399/399 - 39s - 97ms/step - acc: 0.9815 - loss: 0.0632 - val_acc: 0.9902 - val_loss: 0.0378
195+
## 399/399 - 2s - 5ms/step - acc: 0.9799 - loss: 0.0695 - val_acc: 0.9882 - val_loss: 0.0381
196196
```
197197

198198
```r
@@ -223,7 +223,7 @@ predictions <- model |> predict(x_test)
223223
```
224224

225225
```
226-
## 313/313 - 3s - 9ms/step
226+
## 313/313 - 1s - 2ms/step
227227
```
228228

229229
```r
@@ -358,7 +358,7 @@ model |> fit(
358358
```
359359

360360
```
361-
## 399/399 - 39s - 99ms/step - acc: 0.7494 - loss: 0.7321 - val_acc: 0.9291 - val_loss: 0.2322
361+
## 399/399 - 9s - 22ms/step - acc: 0.7409 - loss: 0.7537 - val_acc: 0.9232 - val_loss: 0.2499
362362
```
363363

364364
## Training models on arbitrary data sources
@@ -435,7 +435,7 @@ model |> fit(train_dataset, epochs = 1, validation_data = test_dataset)
435435
```
436436

437437
```
438-
## 469/469 - 46s - 98ms/step - acc: 0.7528 - loss: 0.7348 - val_acc: 0.9235 - val_loss: 0.2524
438+
## 469/469 - 10s - 21ms/step - acc: 0.7581 - loss: 0.7151 - val_acc: 0.8985 - val_loss: 0.3161
439439
```
440440

441441
## Further reading

vignettes/making_new_layers_and_models_via_subclassing.Rmd

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -480,7 +480,7 @@ model |> fit(random_normal(c(2, 3)), random_normal(c(2, 3)), epochs = 1)
480480
```
481481

482482
```
483-
## 1/1 - 0s - 37ms/step - loss: 1.8971
483+
## 1/1 - 0s - 132ms/step - loss: 1.8971
484484
```
485485

486486
```r
@@ -492,7 +492,7 @@ model |> fit(random_normal(c(2, 3)), random_normal(c(2, 3)), epochs = 1)
492492
```
493493

494494
```
495-
## 1/1 - 0s - 26ms/step - loss: -3.3344e-03
495+
## 1/1 - 0s - 104ms/step - loss: -3.3344e-03
496496
```
497497

498498
## You can optionally enable serialization on your layers
@@ -834,7 +834,7 @@ vae |> fit(x_train, x_train, epochs = 2, batch_size = 64)
834834

835835
```
836836
## Epoch 1/2
837-
## 938/938 - 2s - 2ms/step - loss: 0.0748
837+
## 938/938 - 6s - 7ms/step - loss: 0.0748
838838
## Epoch 2/2
839839
## 938/938 - 1s - 1ms/step - loss: 0.0676
840840
```

0 commit comments

Comments
 (0)