|
1 | 1 | # keras3 (development version) |
2 | 2 |
|
| 3 | +## Added compatibility with Keras v3.8.0. User-facing changes: |
| 4 | + |
| 5 | +- New symbols: |
| 6 | + - `activation_sparse_plus()` |
| 7 | + - `activation_sparsemax()` |
| 8 | + - `activation_threshold()` |
| 9 | + - `layer_equalization()` |
| 10 | + - `layer_mix_up()` |
| 11 | + - `layer_rand_augment()` |
| 12 | + - `layer_random_color_degeneration()` |
| 13 | + - `layer_random_color_jitter()` |
| 14 | + - `layer_random_grayscale()` |
| 15 | + - `layer_random_hue()` |
| 16 | + - `layer_random_posterization()` |
| 17 | + - `layer_random_saturation()` |
| 18 | + - `layer_random_sharpness()` |
| 19 | + - `layer_random_shear()` |
| 20 | + - `op_diagflat()` |
| 21 | + - `op_sparse_plus()` |
| 22 | + - `op_sparsemax()` |
| 23 | + - `op_threshold()` |
| 24 | + - `op_unravel_index()` |
| 25 | + |
| 26 | +- Add argument axis to tversky loss |
| 27 | +- New: ONNX model export with `export_savedmodel()` |
| 28 | +- Doc improvements and bug fixes. |
| 29 | +- JAX specific changes: Add support for JAX named scope |
| 30 | +- TensorFlow specific changes: Make `random_shuffle()` XLA compilable |
| 31 | + |
| 32 | + |
3 | 33 | ## Added compatibility with Keras v3.7.0. User-facing changes: |
4 | 34 |
|
5 | 35 | ### New functions |
6 | 36 |
|
7 | 37 | #### Activations |
8 | | -- `activation_celu()` |
| 38 | +- `activation_celu()` |
9 | 39 | - `activation_glu()` |
10 | 40 | - `activation_hard_shrink()` |
11 | 41 | - `activation_hard_tanh()` |
12 | 42 | - `activation_log_sigmoid()` |
13 | | -- `activation_soft_shrink()` |
14 | | -- `activation_squareplus()` |
| 43 | +- `activation_soft_shrink()` |
| 44 | +- `activation_squareplus()` |
15 | 45 | - `activation_tanh_shrink()` |
16 | 46 |
|
17 | 47 | #### Configuration |
|
57 | 87 | * Added support for Intel XPU devices in PyTorch backend |
58 | 88 |
|
59 | 89 |
|
60 | | -- `install_keras()` changes: if a GPU is available, the default is now to |
61 | | - install a CPU build of TensorFlow and a GPU build of JAX. To use a GPU in the |
| 90 | +- `install_keras()` changes: if a GPU is available, the default is now to |
| 91 | + install a CPU build of TensorFlow and a GPU build of JAX. To use a GPU in the |
62 | 92 | current session, call `use_backend("jax")`. |
63 | 93 |
|
64 | 94 | ## Added compatibility with Keras v3.6.0. User-facing changes: |
65 | 95 |
|
66 | 96 | #### Breaking changes: |
67 | 97 |
|
68 | | -- When using `get_file()` with `extract = TRUE` or `untar = TRUE`, the return value |
| 98 | +- When using `get_file()` with `extract = TRUE` or `untar = TRUE`, the return value |
69 | 99 | is now the path of the extracted directory, rather than the path of the archive. |
70 | 100 |
|
71 | 101 | #### Other changes and additions: |
72 | 102 |
|
73 | | -- Logging is now asynchronous in `fit()`, `evaluate()`, and `predict()`. This |
74 | | - enables 100% compact stacking of `train_step` calls on accelerators (e.g. when |
| 103 | +- Logging is now asynchronous in `fit()`, `evaluate()`, and `predict()`. This |
| 104 | + enables 100% compact stacking of `train_step` calls on accelerators (e.g. when |
75 | 105 | running small models on TPU). |
76 | | - - If you are using custom callbacks that rely on `on_batch_end`, this will |
77 | | - disable async logging. You can re-enable it by adding |
78 | | - `self$async_safe <- TRUE` to your callbacks. Note that the TensorBoard |
79 | | - callback is not considered async-safe by default. Default callbacks like the |
| 106 | + - If you are using custom callbacks that rely on `on_batch_end`, this will |
| 107 | + disable async logging. You can re-enable it by adding |
| 108 | + `self$async_safe <- TRUE` to your callbacks. Note that the TensorBoard |
| 109 | + callback is not considered async-safe by default. Default callbacks like the |
80 | 110 | progress bar are async-safe. |
81 | 111 |
|
82 | 112 | - New bitwise operations: |
|
99 | 129 | - `layer_auto_contrast()` |
100 | 130 | - `layer_solarization()` |
101 | 131 |
|
102 | | -- New Model functions `get_state_tree()` and `set_state_tree()`, for retrieving |
103 | | - all model variables, including trainable, non-trainable, optimizer variables, |
| 132 | +- New Model functions `get_state_tree()` and `set_state_tree()`, for retrieving |
| 133 | + all model variables, including trainable, non-trainable, optimizer variables, |
104 | 134 | and metric variables. |
105 | 135 |
|
106 | | -- New `layer_pipeline()` for composing a sequence of layers. This class is useful |
107 | | - for building a preprocessing pipeline. Compared to a `keras_model_sequential()`, |
| 136 | +- New `layer_pipeline()` for composing a sequence of layers. This class is useful |
| 137 | + for building a preprocessing pipeline. Compared to a `keras_model_sequential()`, |
108 | 138 | `layer_pipeline()` has a few key differences: |
109 | 139 | - It's not a Model, just a plain layer. |
110 | | - - When the layers in the pipeline are compatible with `tf.data`, the pipeline |
| 140 | + - When the layers in the pipeline are compatible with `tf.data`, the pipeline |
111 | 141 | will also remain `tf.data` compatible, regardless of the backend you use. |
112 | 142 |
|
113 | 143 | - New argument: `export_savedmodel(verbose = )` |
|
0 commit comments