@@ -118,13 +118,9 @@ loss_binary_crossentropy <-
118118function (y_true , y_pred , from_logits = FALSE , label_smoothing = 0 ,
119119 axis = - 1L , ... , reduction = " sum_over_batch_size" , name = " binary_crossentropy" )
120120{
121- args <- capture_args(list (axis = as_axis , y_true = function (x )
122- if (is_py_object(x ))
123- x
124- else np_array(x ), y_pred = function (x )
125- if (is_py_object(x ))
126- x
127- else np_array(x )))
121+ args <- capture_args(list (axis = as_axis ,
122+ y_true = as_py_array ,
123+ y_pred = as_py_array ))
128124 callable <- if (missing(y_true ) && missing(y_pred ))
129125 keras $ losses $ BinaryCrossentropy
130126 else keras $ losses $ binary_crossentropy
@@ -330,13 +326,9 @@ function (y_true, y_pred, apply_class_balancing = FALSE,
330326 alpha = 0.25 , gamma = 2 , from_logits = FALSE , label_smoothing = 0 ,
331327 axis = - 1L , ... , reduction = " sum_over_batch_size" , name = " binary_focal_crossentropy" )
332328{
333- args <- capture_args(list (axis = as_axis , y_true = function (x )
334- if (is_py_object(x ))
335- x
336- else np_array(x ), y_pred = function (x )
337- if (is_py_object(x ))
338- x
339- else np_array(x )))
329+ args <- capture_args(list (axis = as_axis ,
330+ y_true = as_py_array ,
331+ y_pred = as_py_array ))
340332 callable <- if (missing(y_true ) && missing(y_pred ))
341333 keras $ losses $ BinaryFocalCrossentropy
342334 else keras $ losses $ binary_focal_crossentropy
@@ -440,13 +432,9 @@ loss_categorical_crossentropy <-
440432function (y_true , y_pred , from_logits = FALSE , label_smoothing = 0 ,
441433 axis = - 1L , ... , reduction = " sum_over_batch_size" , name = " categorical_crossentropy" )
442434{
443- args <- capture_args(list (axis = as_axis , y_true = function (x )
444- if (is_py_object(x ))
445- x
446- else np_array(x ), y_pred = function (x )
447- if (is_py_object(x ))
448- x
449- else np_array(x )))
435+ args <- capture_args(list (axis = as_axis ,
436+ y_true = as_py_array ,
437+ y_pred = as_py_array ))
450438 callable <- if (missing(y_true ) && missing(y_pred ))
451439 keras $ losses $ CategoricalCrossentropy
452440 else keras $ losses $ categorical_crossentropy
@@ -597,13 +585,9 @@ function (y_true, y_pred, alpha = 0.25, gamma = 2,
597585 from_logits = FALSE , label_smoothing = 0 , axis = - 1L , ... ,
598586 reduction = " sum_over_batch_size" , name = " categorical_focal_crossentropy" )
599587{
600- args <- capture_args(list (axis = as_axis , y_true = function (x )
601- if (is_py_object(x ))
602- x
603- else np_array(x ), y_pred = function (x )
604- if (is_py_object(x ))
605- x
606- else np_array(x )))
588+ args <- capture_args(list (axis = as_axis ,
589+ y_true = as_py_array ,
590+ y_pred = as_py_array ))
607591 callable <- if (missing(y_true ) && missing(y_pred ))
608592 keras $ losses $ CategoricalFocalCrossentropy
609593 else keras $ losses $ categorical_focal_crossentropy
@@ -662,13 +646,8 @@ loss_categorical_hinge <-
662646function (y_true , y_pred , ... , reduction = " sum_over_batch_size" ,
663647 name = " categorical_hinge" )
664648{
665- args <- capture_args(list (y_true = function (x )
666- if (is_py_object(x ))
667- x
668- else np_array(x ), y_pred = function (x )
669- if (is_py_object(x ))
670- x
671- else np_array(x )))
649+ args <- capture_args(list (y_true = as_py_array ,
650+ y_pred = as_py_array ))
672651 callable <- if (missing(y_true ) && missing(y_pred ))
673652 keras $ losses $ CategoricalHinge
674653 else keras $ losses $ categorical_hinge
@@ -735,13 +714,9 @@ loss_cosine_similarity <-
735714function (y_true , y_pred , axis = - 1L , ... , reduction = " sum_over_batch_size" ,
736715 name = " cosine_similarity" )
737716{
738- args <- capture_args(list (axis = as_axis , y_true = function (x )
739- if (is_py_object(x ))
740- x
741- else np_array(x ), y_pred = function (x )
742- if (is_py_object(x ))
743- x
744- else np_array(x )))
717+ args <- capture_args(list (axis = as_axis ,
718+ y_true = as_py_array ,
719+ y_pred = as_py_array ))
745720 callable <- if (missing(y_true ) && missing(y_pred ))
746721 keras $ losses $ CosineSimilarity
747722 else keras $ losses $ cosine_similarity
@@ -849,13 +824,8 @@ loss_hinge <-
849824function (y_true , y_pred , ... , reduction = " sum_over_batch_size" ,
850825 name = " hinge" )
851826{
852- args <- capture_args(list (y_true = function (x )
853- if (is_py_object(x ))
854- x
855- else np_array(x ), y_pred = function (x )
856- if (is_py_object(x ))
857- x
858- else np_array(x )))
827+ args <- capture_args(list (y_true = as_py_array ,
828+ y_pred = as_py_array ))
859829 callable <- if (missing(y_true ) && missing(y_pred ))
860830 keras $ losses $ Hinge
861831 else keras $ losses $ hinge
@@ -921,13 +891,8 @@ loss_huber <-
921891function (y_true , y_pred , delta = 1 , ... , reduction = " sum_over_batch_size" ,
922892 name = " huber_loss" )
923893{
924- args <- capture_args(list (y_true = function (x )
925- if (is_py_object(x ))
926- x
927- else np_array(x ), y_pred = function (x )
928- if (is_py_object(x ))
929- x
930- else np_array(x )))
894+ args <- capture_args(list (y_true = as_py_array ,
895+ y_pred = as_py_array ))
931896 callable <- if (missing(y_true ) && missing(y_pred ))
932897 keras $ losses $ Huber
933898 else keras $ losses $ huber
@@ -987,13 +952,9 @@ loss_kl_divergence <-
987952function (y_true , y_pred , ... , reduction = " sum_over_batch_size" ,
988953 name = " kl_divergence" )
989954{
990- args <- capture_args(list (y_true = function (x )
991- if (is_py_object(x ))
992- x
993- else np_array(x ), y_pred = function (x )
994- if (is_py_object(x ))
995- x
996- else np_array(x )))
955+ args <- capture_args(list (axis = as_axis ,
956+ y_true = as_py_array ,
957+ y_pred = as_py_array ))
997958 callable <- if (missing(y_true ) && missing(y_pred ))
998959 keras $ losses $ KLDivergence
999960 else keras $ losses $ kl_divergence
@@ -1053,13 +1014,8 @@ loss_log_cosh <-
10531014function (y_true , y_pred , ... , reduction = " sum_over_batch_size" ,
10541015 name = " log_cosh" )
10551016{
1056- args <- capture_args(list (y_true = function (x )
1057- if (is_py_object(x ))
1058- x
1059- else np_array(x ), y_pred = function (x )
1060- if (is_py_object(x ))
1061- x
1062- else np_array(x )))
1017+ args <- capture_args(list (y_true = as_py_array ,
1018+ y_pred = as_py_array ))
10631019 callable <- if (missing(y_true ) && missing(y_pred ))
10641020 keras $ losses $ LogCosh
10651021 else keras $ losses $ log_cosh
@@ -1114,13 +1070,8 @@ loss_mean_absolute_error <-
11141070function (y_true , y_pred , ... , reduction = " sum_over_batch_size" ,
11151071 name = " mean_absolute_error" )
11161072{
1117- args <- capture_args(list (y_true = function (x )
1118- if (is_py_object(x ))
1119- x
1120- else np_array(x ), y_pred = function (x )
1121- if (is_py_object(x ))
1122- x
1123- else np_array(x )))
1073+ args <- capture_args(list (y_true = as_py_array ,
1074+ y_pred = as_py_array ))
11241075 callable <- if (missing(y_true ) && missing(y_pred ))
11251076 keras $ losses $ MeanAbsoluteError
11261077 else keras $ losses $ mean_absolute_error
@@ -1180,13 +1131,8 @@ loss_mean_absolute_percentage_error <-
11801131function (y_true , y_pred , ... , reduction = " sum_over_batch_size" ,
11811132 name = " mean_absolute_percentage_error" )
11821133{
1183- args <- capture_args(list (y_true = function (x )
1184- if (is_py_object(x ))
1185- x
1186- else np_array(x ), y_pred = function (x )
1187- if (is_py_object(x ))
1188- x
1189- else np_array(x )))
1134+ args <- capture_args(list (y_true = as_py_array ,
1135+ y_pred = as_py_array ))
11901136 callable <- if (missing(y_true ) && missing(y_pred ))
11911137 keras $ losses $ MeanAbsolutePercentageError
11921138 else keras $ losses $ mean_absolute_percentage_error
@@ -1241,13 +1187,8 @@ loss_mean_squared_error <-
12411187function (y_true , y_pred , ... , reduction = " sum_over_batch_size" ,
12421188 name = " mean_squared_error" )
12431189{
1244- args <- capture_args(list (y_true = function (x )
1245- if (is_py_object(x ))
1246- x
1247- else np_array(x ), y_pred = function (x )
1248- if (is_py_object(x ))
1249- x
1250- else np_array(x )))
1190+ args <- capture_args(list (y_true = as_py_array ,
1191+ y_pred = as_py_array ))
12511192 callable <- if (missing(y_true ) && missing(y_pred ))
12521193 keras $ losses $ MeanSquaredError
12531194 else keras $ losses $ mean_squared_error
@@ -1306,13 +1247,8 @@ loss_mean_squared_logarithmic_error <-
13061247function (y_true , y_pred , ... , reduction = " sum_over_batch_size" ,
13071248 name = " mean_squared_logarithmic_error" )
13081249{
1309- args <- capture_args(list (y_true = function (x )
1310- if (is_py_object(x ))
1311- x
1312- else np_array(x ), y_pred = function (x )
1313- if (is_py_object(x ))
1314- x
1315- else np_array(x )))
1250+ args <- capture_args(list (y_true = as_py_array ,
1251+ y_pred = as_py_array ))
13161252 callable <- if (missing(y_true ) && missing(y_pred ))
13171253 keras $ losses $ MeanSquaredLogarithmicError
13181254 else keras $ losses $ mean_squared_logarithmic_error
@@ -1368,13 +1304,8 @@ loss_poisson <-
13681304function (y_true , y_pred , ... , reduction = " sum_over_batch_size" ,
13691305 name = " poisson" )
13701306{
1371- args <- capture_args(list (y_true = function (x )
1372- if (is_py_object(x ))
1373- x
1374- else np_array(x ), y_pred = function (x )
1375- if (is_py_object(x ))
1376- x
1377- else np_array(x )))
1307+ args <- capture_args(list (y_true = as_py_array ,
1308+ y_pred = as_py_array ))
13781309 callable <- if (missing(y_true ) && missing(y_pred ))
13791310 keras $ losses $ Poisson
13801311 else keras $ losses $ poisson
@@ -1485,13 +1416,10 @@ loss_sparse_categorical_crossentropy <-
14851416function (y_true , y_pred , from_logits = FALSE , ignore_class = NULL ,
14861417 axis = - 1L , ... , reduction = " sum_over_batch_size" , name = " sparse_categorical_crossentropy" )
14871418{
1488- args <- capture_args(list (ignore_class = as_integer , y_true = function (x )
1489- if (is_py_object(x ))
1490- x
1491- else np_array(x ), y_pred = function (x )
1492- if (is_py_object(x ))
1493- x
1494- else np_array(x ), axis = as_axis ))
1419+ args <- capture_args(list (ignore_class = as_integer ,
1420+ axis = as_axis ,
1421+ y_true = as_py_array ,
1422+ y_pred = as_py_array ))
14951423 callable <- if (missing(y_true ) && missing(y_pred ))
14961424 keras $ losses $ SparseCategoricalCrossentropy
14971425 else keras $ losses $ sparse_categorical_crossentropy
@@ -1551,13 +1479,8 @@ loss_squared_hinge <-
15511479function (y_true , y_pred , ... , reduction = " sum_over_batch_size" ,
15521480 name = " squared_hinge" )
15531481{
1554- args <- capture_args(list (y_true = function (x )
1555- if (is_py_object(x ))
1556- x
1557- else np_array(x ), y_pred = function (x )
1558- if (is_py_object(x ))
1559- x
1560- else np_array(x )))
1482+ args <- capture_args(list (y_true = as_py_array ,
1483+ y_pred = as_py_array ))
15611484 callable <- if (missing(y_true ) && missing(y_pred ))
15621485 keras $ losses $ SquaredHinge
15631486 else keras $ losses $ squared_hinge
0 commit comments