Skip to content

Commit fd3d34d

Browse files
committed
render examples
1 parent 92d3370 commit fd3d34d

24 files changed

+643
-574
lines changed

vignettes/examples/index.Rmd

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
---
22
title: Keras examples
33
output: rmarkdown::html_vignette
4-
date: 'Last Modified: 2023-11-30; Last Rendered: 2024-09-04'
4+
date: 'Last Modified: 2023-11-30; Last Rendered: 2025-01-23'
55
vignette: >
66
%\VignetteIndexEntry{Keras examples}
77
%\VignetteEngine{knitr::rmarkdown}

vignettes/examples/nlp/neural_machine_translation_with_transformer.Rmd

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -583,7 +583,7 @@ transformer |> fit(train_ds, epochs = epochs,
583583
```
584584

585585
```
586-
## 1297/1297 - 48s - 37ms/step - accuracy: 0.7463 - loss: 1.8009 - val_accuracy: 0.7657 - val_loss: 1.5766
586+
## 1297/1297 - 64s - 50ms/step - accuracy: 0.7709 - loss: 1.5752 - val_accuracy: 0.7788 - val_loss: 1.3699
587587
```
588588

589589

vignettes/examples/nlp/text_classification_from_scratch.Rmd

Lines changed: 9 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,6 @@ word splitting & indexing.
2727
library(tensorflow, exclude = c("shape", "set_random_seed"))
2828
library(tfdatasets, exclude = "shape")
2929
library(keras3)
30-
use_virtualenv("r-keras")
3130
```
3231

3332
## Load the data: IMDB movie review sentiment classification
@@ -402,11 +401,11 @@ model |> fit(train_ds, validation_data = val_ds, epochs = epochs)
402401

403402
```
404403
## Epoch 1/3
405-
## 625/625 - 6s - 10ms/step - accuracy: 0.6953 - loss: 0.5231 - val_accuracy: 0.8618 - val_loss: 0.3205
404+
## 625/625 - 5s - 8ms/step - accuracy: 0.6873 - loss: 0.5318 - val_accuracy: 0.8640 - val_loss: 0.3301
406405
## Epoch 2/3
407-
## 625/625 - 1s - 2ms/step - accuracy: 0.9032 - loss: 0.2390 - val_accuracy: 0.8742 - val_loss: 0.3113
406+
## 625/625 - 2s - 3ms/step - accuracy: 0.9047 - loss: 0.2398 - val_accuracy: 0.8716 - val_loss: 0.3212
408407
## Epoch 3/3
409-
## 625/625 - 2s - 2ms/step - accuracy: 0.9553 - loss: 0.1211 - val_accuracy: 0.8666 - val_loss: 0.3531
408+
## 625/625 - 2s - 3ms/step - accuracy: 0.9568 - loss: 0.1230 - val_accuracy: 0.8730 - val_loss: 0.3835
410409
```
411410

412411
## Evaluate the model on the test set
@@ -417,15 +416,15 @@ model |> evaluate(test_ds)
417416
```
418417

419418
```
420-
## 782/782 - 1s - 2ms/step - accuracy: 0.8520 - loss: 0.3960
419+
## 782/782 - 1s - 2ms/step - accuracy: 0.8655 - loss: 0.3982
421420
```
422421

423422
```
424423
## $accuracy
425-
## [1] 0.85204
424+
## [1] 0.86552
426425
##
427426
## $loss
428-
## [1] 0.3959631
427+
## [1] 0.3982031
429428
```
430429

431430
## Make an end-to-end model
@@ -455,13 +454,13 @@ end_to_end_model |> evaluate(raw_test_ds)
455454
```
456455

457456
```
458-
## 782/782 - 3s - 4ms/step - accuracy: 0.8520 - loss: 0.0000e+00
457+
## 782/782 - 3s - 4ms/step - accuracy: 0.8655 - loss: 0.3982
459458
```
460459

461460
```
462461
## $accuracy
463-
## [1] 0.85204
462+
## [1] 0.86552
464463
##
465464
## $loss
466-
## [1] 0
465+
## [1] 0.398203
467466
```

vignettes/examples/structured_data/imbalanced_classification.Rmd

Lines changed: 37 additions & 37 deletions
Large diffs are not rendered by default.

vignettes/examples/structured_data/structured_data_classification_with_feature_space.Rmd

Lines changed: 35 additions & 35 deletions
Original file line numberDiff line numberDiff line change
@@ -201,20 +201,20 @@ cat("Target: "); str(y)
201201

202202
```
203203
## Input: List of 13
204-
## $ age :<tf.Tensor: shape=(), dtype=int32, numpy=45>
204+
## $ age :<tf.Tensor: shape=(), dtype=int32, numpy=59>
205205
## $ sex :<tf.Tensor: shape=(), dtype=int32, numpy=1>
206-
## $ cp :<tf.Tensor: shape=(), dtype=int32, numpy=1>
207-
## $ trestbps:<tf.Tensor: shape=(), dtype=int32, numpy=110>
208-
## $ chol :<tf.Tensor: shape=(), dtype=int32, numpy=264>
209-
## $ fbs :<tf.Tensor: shape=(), dtype=int32, numpy=0>
210-
## $ restecg :<tf.Tensor: shape=(), dtype=int32, numpy=0>
211-
## $ thalach :<tf.Tensor: shape=(), dtype=int32, numpy=132>
206+
## $ cp :<tf.Tensor: shape=(), dtype=int32, numpy=4>
207+
## $ trestbps:<tf.Tensor: shape=(), dtype=int32, numpy=164>
208+
## $ chol :<tf.Tensor: shape=(), dtype=int32, numpy=176>
209+
## $ fbs :<tf.Tensor: shape=(), dtype=int32, numpy=1>
210+
## $ restecg :<tf.Tensor: shape=(), dtype=int32, numpy=2>
211+
## $ thalach :<tf.Tensor: shape=(), dtype=int32, numpy=90>
212212
## $ exang :<tf.Tensor: shape=(), dtype=int32, numpy=0>
213-
## $ oldpeak :<tf.Tensor: shape=(), dtype=float32, numpy=1.2>
213+
## $ oldpeak :<tf.Tensor: shape=(), dtype=float32, numpy=1.0>
214214
## $ slope :<tf.Tensor: shape=(), dtype=int32, numpy=2>
215-
## $ ca :<tf.Tensor: shape=(), dtype=int32, numpy=0>
216-
## $ thal :<tf.Tensor: shape=(), dtype=string, numpy=b'reversible'>
217-
## Target: <tf.Tensor: shape=(), dtype=int32, numpy=0>
215+
## $ ca :<tf.Tensor: shape=(), dtype=int32, numpy=2>
216+
## $ thal :<tf.Tensor: shape=(), dtype=string, numpy=b'fixed'>
217+
## Target: <tf.Tensor: shape=(), dtype=int32, numpy=1>
218218
```
219219

220220
Let's batch the datasets:
@@ -371,13 +371,13 @@ preprocessed_x
371371

372372
```
373373
## tf.Tensor(
374-
## [[0. 0. 0. ... 0. 0. 0.]
374+
## [[0. 0. 0. ... 1. 0. 0.]
375375
## [0. 0. 0. ... 0. 0. 0.]
376376
## [0. 0. 0. ... 0. 0. 0.]
377377
## ...
378378
## [0. 0. 0. ... 0. 0. 0.]
379379
## [0. 0. 0. ... 0. 0. 0.]
380-
## [0. 0. 0. ... 0. 0. 0.]], shape=(32, 136), dtype=float32)
380+
## [0. 0. 1. ... 0. 0. 0.]], shape=(32, 136), dtype=float32)
381381
```
382382

383383
## Two ways to manage preprocessing: as part of the `tf.data` pipeline, or in the model itself
@@ -463,45 +463,45 @@ training_model |> fit(
463463

464464
```
465465
## Epoch 1/20
466-
## 8/8 - 2s - 280ms/step - accuracy: 0.4689 - loss: 0.7471 - val_accuracy: 0.5167 - val_loss: 0.7019
466+
## 8/8 - 2s - 274ms/step - accuracy: 0.4647 - loss: 0.7443 - val_accuracy: 0.4833 - val_loss: 0.7008
467467
## Epoch 2/20
468-
## 8/8 - 1s - 140ms/step - accuracy: 0.5602 - loss: 0.6785 - val_accuracy: 0.6333 - val_loss: 0.6491
468+
## 8/8 - 0s - 29ms/step - accuracy: 0.6141 - loss: 0.6784 - val_accuracy: 0.6167 - val_loss: 0.6540
469469
## Epoch 3/20
470-
## 8/8 - 0s - 46ms/step - accuracy: 0.6307 - loss: 0.6478 - val_accuracy: 0.7000 - val_loss: 0.6053
470+
## 8/8 - 0s - 32ms/step - accuracy: 0.5809 - loss: 0.6657 - val_accuracy: 0.7167 - val_loss: 0.6160
471471
## Epoch 4/20
472-
## 8/8 - 0s - 12ms/step - accuracy: 0.6432 - loss: 0.6246 - val_accuracy: 0.7667 - val_loss: 0.5692
472+
## 8/8 - 0s - 30ms/step - accuracy: 0.6763 - loss: 0.6155 - val_accuracy: 0.7333 - val_loss: 0.5833
473473
## Epoch 5/20
474-
## 8/8 - 0s - 13ms/step - accuracy: 0.7178 - loss: 0.5813 - val_accuracy: 0.7667 - val_loss: 0.5359
474+
## 8/8 - 0s - 30ms/step - accuracy: 0.7386 - loss: 0.5935 - val_accuracy: 0.7500 - val_loss: 0.5565
475475
## Epoch 6/20
476-
## 8/8 - 0s - 13ms/step - accuracy: 0.7344 - loss: 0.5371 - val_accuracy: 0.7833 - val_loss: 0.5067
476+
## 8/8 - 0s - 30ms/step - accuracy: 0.7261 - loss: 0.5560 - val_accuracy: 0.7500 - val_loss: 0.5304
477477
## Epoch 7/20
478-
## 8/8 - 0s - 13ms/step - accuracy: 0.7884 - loss: 0.5158 - val_accuracy: 0.8333 - val_loss: 0.4810
478+
## 8/8 - 0s - 30ms/step - accuracy: 0.7718 - loss: 0.5114 - val_accuracy: 0.7333 - val_loss: 0.5076
479479
## Epoch 8/20
480-
## 8/8 - 0s - 13ms/step - accuracy: 0.7759 - loss: 0.5011 - val_accuracy: 0.8500 - val_loss: 0.4569
480+
## 8/8 - 0s - 30ms/step - accuracy: 0.7925 - loss: 0.5025 - val_accuracy: 0.7500 - val_loss: 0.4875
481481
## Epoch 9/20
482-
## 8/8 - 0s - 13ms/step - accuracy: 0.7676 - loss: 0.4865 - val_accuracy: 0.8500 - val_loss: 0.4354
482+
## 8/8 - 0s - 30ms/step - accuracy: 0.7510 - loss: 0.5042 - val_accuracy: 0.7500 - val_loss: 0.4698
483483
## Epoch 10/20
484-
## 8/8 - 0s - 13ms/step - accuracy: 0.7925 - loss: 0.4601 - val_accuracy: 0.8333 - val_loss: 0.4161
484+
## 8/8 - 0s - 30ms/step - accuracy: 0.8008 - loss: 0.4562 - val_accuracy: 0.7500 - val_loss: 0.4555
485485
## Epoch 11/20
486-
## 8/8 - 0s - 13ms/step - accuracy: 0.7967 - loss: 0.4617 - val_accuracy: 0.8667 - val_loss: 0.3976
486+
## 8/8 - 0s - 30ms/step - accuracy: 0.8714 - loss: 0.4418 - val_accuracy: 0.7667 - val_loss: 0.4431
487487
## Epoch 12/20
488-
## 8/8 - 0s - 13ms/step - accuracy: 0.7967 - loss: 0.4316 - val_accuracy: 0.8667 - val_loss: 0.3796
488+
## 8/8 - 0s - 33ms/step - accuracy: 0.8506 - loss: 0.4182 - val_accuracy: 0.7500 - val_loss: 0.4327
489489
## Epoch 13/20
490-
## 8/8 - 0s - 13ms/step - accuracy: 0.8506 - loss: 0.4058 - val_accuracy: 0.8833 - val_loss: 0.3643
490+
## 8/8 - 0s - 30ms/step - accuracy: 0.8465 - loss: 0.3950 - val_accuracy: 0.7667 - val_loss: 0.4239
491491
## Epoch 14/20
492-
## 8/8 - 0s - 13ms/step - accuracy: 0.8174 - loss: 0.4197 - val_accuracy: 0.8833 - val_loss: 0.3510
492+
## 8/8 - 0s - 30ms/step - accuracy: 0.8382 - loss: 0.3905 - val_accuracy: 0.7667 - val_loss: 0.4166
493493
## Epoch 15/20
494-
## 8/8 - 0s - 14ms/step - accuracy: 0.8299 - loss: 0.3888 - val_accuracy: 0.8833 - val_loss: 0.3405
494+
## 8/8 - 0s - 30ms/step - accuracy: 0.8465 - loss: 0.3661 - val_accuracy: 0.7833 - val_loss: 0.4104
495495
## Epoch 16/20
496-
## 8/8 - 0s - 13ms/step - accuracy: 0.8257 - loss: 0.3820 - val_accuracy: 0.8833 - val_loss: 0.3294
496+
## 8/8 - 0s - 30ms/step - accuracy: 0.8631 - loss: 0.3725 - val_accuracy: 0.8000 - val_loss: 0.4053
497497
## Epoch 17/20
498-
## 8/8 - 0s - 13ms/step - accuracy: 0.8299 - loss: 0.3746 - val_accuracy: 0.8833 - val_loss: 0.3223
498+
## 8/8 - 0s - 30ms/step - accuracy: 0.8299 - loss: 0.3679 - val_accuracy: 0.8167 - val_loss: 0.4014
499499
## Epoch 18/20
500-
## 8/8 - 0s - 13ms/step - accuracy: 0.8506 - loss: 0.3487 - val_accuracy: 0.8833 - val_loss: 0.3153
500+
## 8/8 - 0s - 30ms/step - accuracy: 0.8714 - loss: 0.3501 - val_accuracy: 0.8167 - val_loss: 0.3984
501501
## Epoch 19/20
502-
## 8/8 - 0s - 14ms/step - accuracy: 0.8465 - loss: 0.3558 - val_accuracy: 0.8667 - val_loss: 0.3093
502+
## 8/8 - 0s - 30ms/step - accuracy: 0.8714 - loss: 0.3322 - val_accuracy: 0.8167 - val_loss: 0.3949
503503
## Epoch 20/20
504-
## 8/8 - 0s - 14ms/step - accuracy: 0.8672 - loss: 0.3570 - val_accuracy: 0.8667 - val_loss: 0.3036
504+
## 8/8 - 0s - 30ms/step - accuracy: 0.8506 - loss: 0.3303 - val_accuracy: 0.8167 - val_loss: 0.3924
505505
```
506506

507507
We quickly get to 80% validation accuracy.
@@ -534,7 +534,7 @@ predictions <- inference_model |> predict(input_dict)
534534
```
535535

536536
```
537-
## 1/1 - 0s - 394ms/step
537+
## 1/1 - 0s - 341ms/step
538538
```
539539

540540
``` r
@@ -545,6 +545,6 @@ glue::glue(r"---(
545545
```
546546

547547
```
548-
## This particular patient had a 44.8% probability
548+
## This particular patient had a 51.4% probability
549549
## of having a heart disease, as evaluated by our model.
550550
```

0 commit comments

Comments
 (0)