You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
This project demonstrates end-to-end ML engineering capabilities including data processing, model training, API development, containerization, and CI/CD automation. The platform processes millions of Yelp reviews to provide business recommendations and sentiment analysis through a REST API.
14
15
16
+
---
17
+
15
18
## Key Features
16
19
17
20
**Machine Learning Models**
@@ -35,6 +38,8 @@ This project demonstrates end-to-end ML engineering capabilities including data
35
38
- Code quality checks with Black, isort, and Flake8
36
39
- Docker image building and deployment automation
37
40
41
+
---
42
+
38
43
## Project Structure
39
44
```
40
45
yelp-ml-platform/
@@ -54,6 +59,8 @@ yelp-ml-platform/
54
59
55
60
For detailed project structure, see [docs/ARCHITECTURE.md](docs/ARCHITECTURE.md)
56
61
62
+
---
63
+
57
64
## Quick Start
58
65
59
66
### Prerequisites
@@ -89,6 +96,8 @@ conda activate yelp-ml-platform
89
96
90
97
For detailed setup instructions, see [docs/SETUP.md](docs/SETUP.md)
91
98
99
+
---
100
+
92
101
## Usage
93
102
94
103
### Running the API
@@ -139,6 +148,8 @@ For complete API documentation, see [docs/API.md](docs/API.md)
139
148
140
149
For detailed model evaluation, see [docs/MODELS.md](docs/MODELS.md)
141
150
151
+
---
152
+
142
153
## Development
143
154
144
155
### Running Tests
@@ -174,6 +185,8 @@ mlflow ui --port 5001
174
185
# View experiments at http://localhost:5001
175
186
```
176
187
188
+
---
189
+
177
190
## Deployment
178
191
179
192
### Docker Deployment
@@ -195,6 +208,8 @@ The project includes automated workflows for:
195
208
196
209
All workflows are defined in `.github/workflows/`
197
210
211
+
---
212
+
198
213
## Technical Stack
199
214
200
215
**Core Technologies:**
@@ -217,22 +232,58 @@ All workflows are defined in `.github/workflows/`
217
232
- Pandas 2.1.0
218
233
- NumPy 1.26.0
219
234
235
+
---
236
+
220
237
## Project Timeline
221
238
222
239
This project was developed over 16 weeks (November 2024 - March 2025) following a structured development plan with distinct phases for data engineering, ML model development, API creation, testing, and deployment automation.
223
240
241
+
---
242
+
224
243
## License
225
244
226
-
MIT License - see LICENSE file for details
245
+
This project is licensed under a **Custom Research and Educational License**.
227
246
228
-
## Contact
247
+
**Key Points:**
248
+
- View and study the code freely
249
+
- Use for educational purposes
250
+
- Reference in academic papers
251
+
- Copying/forking requires written permission
252
+
- Commercial use requires written permission
253
+
- Modification and redistribution require written permission
See the [LICENSE](LICENSE) file for complete terms.
258
+
259
+
---
234
260
235
261
## Acknowledgments
236
262
237
-
- Yelp Dataset: https://www.yelp.com/dataset
238
-
- Dataset used for academic and portfolio purposes
263
+
- OpenCV community for the GrabCut implementation
264
+
-**Nirma University** for hosting the MiNeD Hackathon
265
+
- Diamond dataset providers
266
+
- Academic advisors and mentors
267
+
- Open-source contributors
268
+
269
+
---
270
+
271
+
## References
272
+
273
+
1. Rother, C., Kolmogorov, V., & Blake, A. (2004). "GrabCut: Interactive foreground extraction using iterated graph cuts." *ACM Transactions on Graphics*, 23(3), 309-314.
274
+
275
+
2. Pizer, S. M., et al. (1987). "Adaptive histogram equalization and its variations." *Computer Vision, Graphics, and Image Processing*, 39(3), 355-368.
276
+
277
+
3. Bradski, G. (2000). "The OpenCV Library." *Dr. Dobb's Journal of Software Tools*.
0 commit comments