|
1 |
| -use ndarray::*; |
2 |
| -use ndarray_linalg::*; |
| 1 | +use ndarray::prelude::*; |
| 2 | +use ndarray_linalg::{ |
| 3 | + assert_aclose, assert_close_l2, c32, c64, random, random_hpd, solve::*, OperationNorm, Scalar, |
| 4 | +}; |
| 5 | + |
| 6 | +macro_rules! test_solve { |
| 7 | + ( |
| 8 | + [$($elem_type:ty => $rtol:expr),*], |
| 9 | + $a_ident:ident = $a:expr, |
| 10 | + $x_ident:ident = $x:expr, |
| 11 | + b = $b:expr, |
| 12 | + $solve:ident, |
| 13 | + ) => { |
| 14 | + $({ |
| 15 | + let $a_ident: Array2<$elem_type> = $a; |
| 16 | + let $x_ident: Array1<$elem_type> = $x; |
| 17 | + let b: Array1<$elem_type> = $b; |
| 18 | + let a = $a_ident; |
| 19 | + let x = $x_ident; |
| 20 | + let rtol = $rtol; |
| 21 | + assert_close_l2!(&a.$solve(&b).unwrap(), &x, rtol); |
| 22 | + assert_close_l2!(&a.factorize().unwrap().$solve(&b).unwrap(), &x, rtol); |
| 23 | + assert_close_l2!(&a.factorize_into().unwrap().$solve(&b).unwrap(), &x, rtol); |
| 24 | + })* |
| 25 | + }; |
| 26 | +} |
| 27 | + |
| 28 | +macro_rules! test_solve_into { |
| 29 | + ( |
| 30 | + [$($elem_type:ty => $rtol:expr),*], |
| 31 | + $a_ident:ident = $a:expr, |
| 32 | + $x_ident:ident = $x:expr, |
| 33 | + b = $b:expr, |
| 34 | + $solve_into:ident, |
| 35 | + ) => { |
| 36 | + $({ |
| 37 | + let $a_ident: Array2<$elem_type> = $a; |
| 38 | + let $x_ident: Array1<$elem_type> = $x; |
| 39 | + let b: Array1<$elem_type> = $b; |
| 40 | + let a = $a_ident; |
| 41 | + let x = $x_ident; |
| 42 | + let rtol = $rtol; |
| 43 | + assert_close_l2!(&a.$solve_into(b.clone()).unwrap(), &x, rtol); |
| 44 | + assert_close_l2!(&a.factorize().unwrap().$solve_into(b.clone()).unwrap(), &x, rtol); |
| 45 | + assert_close_l2!(&a.factorize_into().unwrap().$solve_into(b.clone()).unwrap(), &x, rtol); |
| 46 | + })* |
| 47 | + }; |
| 48 | +} |
| 49 | + |
| 50 | +macro_rules! test_solve_inplace { |
| 51 | + ( |
| 52 | + [$($elem_type:ty => $rtol:expr),*], |
| 53 | + $a_ident:ident = $a:expr, |
| 54 | + $x_ident:ident = $x:expr, |
| 55 | + b = $b:expr, |
| 56 | + $solve_inplace:ident, |
| 57 | + ) => { |
| 58 | + $({ |
| 59 | + let $a_ident: Array2<$elem_type> = $a; |
| 60 | + let $x_ident: Array1<$elem_type> = $x; |
| 61 | + let b: Array1<$elem_type> = $b; |
| 62 | + let a = $a_ident; |
| 63 | + let x = $x_ident; |
| 64 | + let rtol = $rtol; |
| 65 | + { |
| 66 | + let mut b = b.clone(); |
| 67 | + assert_close_l2!(&a.$solve_inplace(&mut b).unwrap(), &x, rtol); |
| 68 | + assert_close_l2!(&b, &x, rtol); |
| 69 | + } |
| 70 | + { |
| 71 | + let mut b = b.clone(); |
| 72 | + assert_close_l2!(&a.factorize().unwrap().$solve_inplace(&mut b).unwrap(), &x, rtol); |
| 73 | + assert_close_l2!(&b, &x, rtol); |
| 74 | + } |
| 75 | + { |
| 76 | + let mut b = b.clone(); |
| 77 | + assert_close_l2!(&a.factorize_into().unwrap().$solve_inplace(&mut b).unwrap(), &x, rtol); |
| 78 | + assert_close_l2!(&b, &x, rtol); |
| 79 | + } |
| 80 | + })* |
| 81 | + }; |
| 82 | +} |
| 83 | + |
| 84 | +macro_rules! test_solve_all { |
| 85 | + ( |
| 86 | + [$($elem_type:ty => $rtol:expr),*], |
| 87 | + $a_ident:ident = $a:expr, |
| 88 | + $x_ident:ident = $x:expr, |
| 89 | + b = $b:expr, |
| 90 | + [$solve:ident, $solve_into:ident, $solve_inplace:ident], |
| 91 | + ) => { |
| 92 | + test_solve!([$($elem_type => $rtol),*], $a_ident = $a, $x_ident = $x, b = $b, $solve,); |
| 93 | + test_solve_into!([$($elem_type => $rtol),*], $a_ident = $a, $x_ident = $x, b = $b, $solve_into,); |
| 94 | + test_solve_inplace!([$($elem_type => $rtol),*], $a_ident = $a, $x_ident = $x, b = $b, $solve_inplace,); |
| 95 | + }; |
| 96 | +} |
| 97 | + |
| 98 | +#[test] |
| 99 | +fn solve_random_float() { |
| 100 | + for n in 0..=8 { |
| 101 | + for &set_f in &[false, true] { |
| 102 | + test_solve_all!( |
| 103 | + [f32 => 1e-3, f64 => 1e-9], |
| 104 | + a = random([n; 2].set_f(set_f)), |
| 105 | + x = random(n), |
| 106 | + b = a.dot(&x), |
| 107 | + [solve, solve_into, solve_inplace], |
| 108 | + ); |
| 109 | + } |
| 110 | + } |
| 111 | +} |
| 112 | + |
| 113 | +#[test] |
| 114 | +fn solve_random_complex() { |
| 115 | + for n in 0..=8 { |
| 116 | + for &set_f in &[false, true] { |
| 117 | + test_solve_all!( |
| 118 | + [c32 => 1e-3, c64 => 1e-9], |
| 119 | + a = random([n; 2].set_f(set_f)), |
| 120 | + x = random(n), |
| 121 | + b = a.dot(&x), |
| 122 | + [solve, solve_into, solve_inplace], |
| 123 | + ); |
| 124 | + } |
| 125 | + } |
| 126 | +} |
3 | 127 |
|
4 | 128 | #[test]
|
5 |
| -fn solve_random() { |
6 |
| - let a: Array2<f64> = random((3, 3)); |
7 |
| - let x: Array1<f64> = random(3); |
8 |
| - let b = a.dot(&x); |
9 |
| - let y = a.solve_into(b).unwrap(); |
10 |
| - assert_close_l2!(&x, &y, 1e-7); |
| 129 | +fn solve_t_random_float() { |
| 130 | + for n in 0..=8 { |
| 131 | + for &set_f in &[false, true] { |
| 132 | + test_solve_all!( |
| 133 | + [f32 => 1e-3, f64 => 1e-9], |
| 134 | + a = random([n; 2].set_f(set_f)), |
| 135 | + x = random(n), |
| 136 | + b = a.t().dot(&x), |
| 137 | + [solve_t, solve_t_into, solve_t_inplace], |
| 138 | + ); |
| 139 | + } |
| 140 | + } |
11 | 141 | }
|
12 | 142 |
|
13 | 143 | #[test]
|
14 |
| -fn solve_random_t() { |
15 |
| - let a: Array2<f64> = random((3, 3).f()); |
16 |
| - let x: Array1<f64> = random(3); |
17 |
| - let b = a.dot(&x); |
18 |
| - let y = a.solve_into(b).unwrap(); |
19 |
| - assert_close_l2!(&x, &y, 1e-7); |
| 144 | +fn solve_t_random_complex() { |
| 145 | + for n in 0..=8 { |
| 146 | + for &set_f in &[false, true] { |
| 147 | + test_solve_all!( |
| 148 | + [c32 => 1e-3, c64 => 1e-9], |
| 149 | + a = random([n; 2].set_f(set_f)), |
| 150 | + x = random(n), |
| 151 | + b = a.t().dot(&x), |
| 152 | + [solve_t, solve_t_into, solve_t_inplace], |
| 153 | + ); |
| 154 | + } |
| 155 | + } |
20 | 156 | }
|
21 | 157 |
|
22 | 158 | #[test]
|
23 |
| -fn solve_factorized() { |
24 |
| - let a: Array2<f64> = random((3, 3)); |
25 |
| - let ans: Array1<f64> = random(3); |
26 |
| - let b = a.dot(&ans); |
27 |
| - let f = a.factorize_into().unwrap(); |
28 |
| - let x = f.solve_into(b).unwrap(); |
29 |
| - assert_close_l2!(&x, &ans, 1e-7); |
| 159 | +fn solve_h_random_float() { |
| 160 | + for n in 0..=8 { |
| 161 | + for &set_f in &[false, true] { |
| 162 | + test_solve_all!( |
| 163 | + [f32 => 1e-3, f64 => 1e-9], |
| 164 | + a = random([n; 2].set_f(set_f)), |
| 165 | + x = random(n), |
| 166 | + b = a.t().mapv(|x| x.conj()).dot(&x), |
| 167 | + [solve_h, solve_h_into, solve_h_inplace], |
| 168 | + ); |
| 169 | + } |
| 170 | + } |
30 | 171 | }
|
31 | 172 |
|
32 | 173 | #[test]
|
33 |
| -fn solve_factorized_t() { |
34 |
| - let a: Array2<f64> = random((3, 3).f()); |
35 |
| - let ans: Array1<f64> = random(3); |
36 |
| - let b = a.dot(&ans); |
37 |
| - let f = a.factorize_into().unwrap(); |
38 |
| - let x = f.solve_into(b).unwrap(); |
39 |
| - assert_close_l2!(&x, &ans, 1e-7); |
| 174 | +fn solve_h_random_complex() { |
| 175 | + for n in 0..=8 { |
| 176 | + for &set_f in &[false, true] { |
| 177 | + test_solve_all!( |
| 178 | + [c32 => 1e-3, c64 => 1e-9], |
| 179 | + a = random([n; 2].set_f(set_f)), |
| 180 | + x = random(n), |
| 181 | + b = a.t().mapv(|x| x.conj()).dot(&x), |
| 182 | + [solve_h, solve_h_into, solve_h_inplace], |
| 183 | + ); |
| 184 | + } |
| 185 | + } |
40 | 186 | }
|
41 | 187 |
|
42 | 188 | #[test]
|
|
0 commit comments