|
50 | 50 | //! ```
|
51 | 51 |
|
52 | 52 | use ndarray::*;
|
| 53 | +use num_traits::{Float, One, Zero}; |
53 | 54 |
|
54 | 55 | use super::convert::*;
|
55 | 56 | use super::error::*;
|
@@ -258,3 +259,121 @@ where
|
258 | 259 | f.invh_into()
|
259 | 260 | }
|
260 | 261 | }
|
| 262 | + |
| 263 | +/// An interface for calculating determinants of Hermitian (or real symmetric) matrix refs. |
| 264 | +pub trait DeterminantH { |
| 265 | + type Output; |
| 266 | + |
| 267 | + /// Computes the determinant of the Hermitian (or real symmetric) matrix. |
| 268 | + fn deth(&self) -> Self::Output; |
| 269 | +} |
| 270 | + |
| 271 | +/// An interface for calculating determinants of Hermitian (or real symmetric) matrices. |
| 272 | +pub trait DeterminantHInto { |
| 273 | + type Output; |
| 274 | + |
| 275 | + /// Computes the determinant of the Hermitian (or real symmetric) matrix. |
| 276 | + fn deth_into(self) -> Self::Output; |
| 277 | +} |
| 278 | + |
| 279 | +fn bk_det<P, S, A>(uplo: UPLO, ipiv_iter: P, a: &ArrayBase<S, Ix2>) -> A::Real |
| 280 | +where |
| 281 | + P: Iterator<Item = i32>, |
| 282 | + S: Data<Elem = A>, |
| 283 | + A: Scalar, |
| 284 | +{ |
| 285 | + let mut sign = A::Real::one(); |
| 286 | + let mut ln_det = A::Real::zero(); |
| 287 | + let mut ipiv_enum = ipiv_iter.enumerate(); |
| 288 | + while let Some((k, ipiv_k)) = ipiv_enum.next() { |
| 289 | + debug_assert!(k < a.rows() && k < a.cols()); |
| 290 | + if ipiv_k > 0 { |
| 291 | + // 1x1 block at k, must be real. |
| 292 | + let elem = unsafe { a.uget((k, k)) }.real(); |
| 293 | + debug_assert_eq!(elem.imag(), Zero::zero()); |
| 294 | + sign = sign * elem.signum(); |
| 295 | + ln_det = ln_det + elem.abs().ln(); |
| 296 | + } else { |
| 297 | + // 2x2 block at k..k+2. |
| 298 | + |
| 299 | + // Upper left diagonal elem, must be real. |
| 300 | + let upper_diag = unsafe { a.uget((k, k)) }.real(); |
| 301 | + debug_assert_eq!(upper_diag.imag(), Zero::zero()); |
| 302 | + |
| 303 | + // Lower right diagonal elem, must be real. |
| 304 | + let lower_diag = unsafe { a.uget((k + 1, k + 1)) }.real(); |
| 305 | + debug_assert_eq!(lower_diag.imag(), Zero::zero()); |
| 306 | + |
| 307 | + // Off-diagonal elements, can be complex. |
| 308 | + let off_diag = match uplo { |
| 309 | + UPLO::Upper => unsafe { a.uget((k, k + 1)) }, |
| 310 | + UPLO::Lower => unsafe { a.uget((k + 1, k)) }, |
| 311 | + }; |
| 312 | + |
| 313 | + // Determinant of 2x2 block. |
| 314 | + let block_det = upper_diag * lower_diag - off_diag.abs_sqr(); |
| 315 | + sign = sign * block_det.signum(); |
| 316 | + ln_det = ln_det + block_det.abs().ln(); |
| 317 | + |
| 318 | + // Skip the k+1 ipiv value. |
| 319 | + ipiv_enum.next(); |
| 320 | + } |
| 321 | + } |
| 322 | + sign * ln_det.exp() |
| 323 | +} |
| 324 | + |
| 325 | +impl<A, S> DeterminantH for BKFactorized<S> |
| 326 | +where |
| 327 | + A: Scalar, |
| 328 | + S: Data<Elem = A>, |
| 329 | +{ |
| 330 | + type Output = A::Real; |
| 331 | + |
| 332 | + fn deth(&self) -> A::Real { |
| 333 | + bk_det(UPLO::Upper, self.ipiv.iter().cloned(), &self.a) |
| 334 | + } |
| 335 | +} |
| 336 | + |
| 337 | +impl<A, S> DeterminantHInto for BKFactorized<S> |
| 338 | +where |
| 339 | + A: Scalar, |
| 340 | + S: Data<Elem = A>, |
| 341 | +{ |
| 342 | + type Output = A::Real; |
| 343 | + |
| 344 | + fn deth_into(self) -> A::Real { |
| 345 | + bk_det(UPLO::Upper, self.ipiv.into_iter(), &self.a) |
| 346 | + } |
| 347 | +} |
| 348 | + |
| 349 | +impl<A, S> DeterminantH for ArrayBase<S, Ix2> |
| 350 | +where |
| 351 | + A: Scalar, |
| 352 | + S: Data<Elem = A>, |
| 353 | +{ |
| 354 | + type Output = Result<A::Real>; |
| 355 | + |
| 356 | + fn deth(&self) -> Result<A::Real> { |
| 357 | + match self.factorizeh() { |
| 358 | + Ok(fac) => Ok(fac.deth()), |
| 359 | + Err(LinalgError::Lapack(LapackError { return_code })) if return_code > 0 => Ok(A::Real::zero()), |
| 360 | + Err(err) => Err(err), |
| 361 | + } |
| 362 | + } |
| 363 | +} |
| 364 | + |
| 365 | +impl<A, S> DeterminantHInto for ArrayBase<S, Ix2> |
| 366 | +where |
| 367 | + A: Scalar, |
| 368 | + S: DataMut<Elem = A>, |
| 369 | +{ |
| 370 | + type Output = Result<A::Real>; |
| 371 | + |
| 372 | + fn deth_into(self) -> Result<A::Real> { |
| 373 | + match self.factorizeh_into() { |
| 374 | + Ok(fac) => Ok(fac.deth_into()), |
| 375 | + Err(LinalgError::Lapack(LapackError { return_code })) if return_code > 0 => Ok(A::Real::zero()), |
| 376 | + Err(err) => Err(err), |
| 377 | + } |
| 378 | + } |
| 379 | +} |
0 commit comments