94
94
}
95
95
}
96
96
97
- impl < A , S > CholeskyDeterminant for CholeskyFactorized < S >
97
+ impl < A , S > DeterminantC for CholeskyFactorized < S >
98
98
where
99
99
A : Absolute ,
100
100
S : Data < Elem = A > ,
@@ -111,7 +111,7 @@ where
111
111
}
112
112
}
113
113
114
- impl < A , S > CholeskyDeterminantInto for CholeskyFactorized < S >
114
+ impl < A , S > DeterminantCInto for CholeskyFactorized < S >
115
115
where
116
116
A : Absolute ,
117
117
S : Data < Elem = A > ,
@@ -123,7 +123,7 @@ where
123
123
}
124
124
}
125
125
126
- impl < A , S > CholeskyInverse for CholeskyFactorized < S >
126
+ impl < A , S > InverseC for CholeskyFactorized < S >
127
127
where
128
128
A : Scalar ,
129
129
S : Data < Elem = A > ,
@@ -139,7 +139,7 @@ where
139
139
}
140
140
}
141
141
142
- impl < A , S > CholeskyInverseInto for CholeskyFactorized < S >
142
+ impl < A , S > InverseCInto for CholeskyFactorized < S >
143
143
where
144
144
A : Scalar ,
145
145
S : DataMut < Elem = A > ,
@@ -154,7 +154,7 @@ where
154
154
}
155
155
}
156
156
157
- impl < A , S > CholeskySolve < A > for CholeskyFactorized < S >
157
+ impl < A , S > SolveC < A > for CholeskyFactorized < S >
158
158
where
159
159
A : Scalar ,
160
160
S : Data < Elem = A > ,
@@ -255,7 +255,7 @@ where
255
255
}
256
256
257
257
/// Cholesky decomposition of Hermitian (or real symmetric) positive definite matrix reference
258
- pub trait CholeskyFactorize < S : Data > {
258
+ pub trait FactorizeC < S : Data > {
259
259
/// Computes the Cholesky decomposition of the Hermitian (or real
260
260
/// symmetric) positive definite matrix.
261
261
///
@@ -268,7 +268,7 @@ pub trait CholeskyFactorize<S: Data> {
268
268
}
269
269
270
270
/// Cholesky decomposition of Hermitian (or real symmetric) positive definite matrix
271
- pub trait CholeskyFactorizeInto < S : Data > {
271
+ pub trait FactorizeCInto < S : Data > {
272
272
/// Computes the Cholesky decomposition of the Hermitian (or real
273
273
/// symmetric) positive definite matrix.
274
274
///
@@ -280,7 +280,7 @@ pub trait CholeskyFactorizeInto<S: Data> {
280
280
fn factorizec_into ( self , UPLO ) -> Result < CholeskyFactorized < S > > ;
281
281
}
282
282
283
- impl < A , S > CholeskyFactorizeInto < S > for ArrayBase < S , Ix2 >
283
+ impl < A , S > FactorizeCInto < S > for ArrayBase < S , Ix2 >
284
284
where
285
285
A : Scalar ,
286
286
S : DataMut < Elem = A > ,
@@ -293,7 +293,7 @@ where
293
293
}
294
294
}
295
295
296
- impl < A , Si > CholeskyFactorize < OwnedRepr < A > > for ArrayBase < Si , Ix2 >
296
+ impl < A , Si > FactorizeC < OwnedRepr < A > > for ArrayBase < Si , Ix2 >
297
297
where
298
298
A : Scalar ,
299
299
Si : Data < Elem = A > ,
@@ -308,7 +308,7 @@ where
308
308
309
309
/// Solve systems of linear equations with Hermitian (or real symmetric)
310
310
/// positive definite coefficient matrices
311
- pub trait CholeskySolve < A : Scalar > {
311
+ pub trait SolveC < A : Scalar > {
312
312
/// Solves a system of linear equations `A * x = b` with Hermitian (or real
313
313
/// symmetric) positive definite matrix `A`, where `A` is `self`, `b` is
314
314
/// the argument, and `x` is the successful result.
@@ -331,7 +331,7 @@ pub trait CholeskySolve<A: Scalar> {
331
331
fn solvec_inplace < ' a , S : DataMut < Elem = A > > ( & self , & ' a mut ArrayBase < S , Ix1 > ) -> Result < & ' a mut ArrayBase < S , Ix1 > > ;
332
332
}
333
333
334
- impl < A , S > CholeskySolve < A > for ArrayBase < S , Ix2 >
334
+ impl < A , S > SolveC < A > for ArrayBase < S , Ix2 >
335
335
where
336
336
A : Scalar ,
337
337
S : Data < Elem = A > ,
@@ -345,22 +345,22 @@ where
345
345
}
346
346
347
347
/// Inverse of Hermitian (or real symmetric) positive definite matrix ref
348
- pub trait CholeskyInverse {
348
+ pub trait InverseC {
349
349
type Output ;
350
350
/// Computes the inverse of the Hermitian (or real symmetric) positive
351
351
/// definite matrix.
352
352
fn invc ( & self ) -> Result < Self :: Output > ;
353
353
}
354
354
355
355
/// Inverse of Hermitian (or real symmetric) positive definite matrix
356
- pub trait CholeskyInverseInto {
356
+ pub trait InverseCInto {
357
357
type Output ;
358
358
/// Computes the inverse of the Hermitian (or real symmetric) positive
359
359
/// definite matrix.
360
360
fn invc_into ( self ) -> Result < Self :: Output > ;
361
361
}
362
362
363
- impl < A , S > CholeskyInverse for ArrayBase < S , Ix2 >
363
+ impl < A , S > InverseC for ArrayBase < S , Ix2 >
364
364
where
365
365
A : Scalar ,
366
366
S : Data < Elem = A > ,
@@ -372,7 +372,7 @@ where
372
372
}
373
373
}
374
374
375
- impl < A , S > CholeskyInverseInto for ArrayBase < S , Ix2 >
375
+ impl < A , S > InverseCInto for ArrayBase < S , Ix2 >
376
376
where
377
377
A : Scalar ,
378
378
S : DataMut < Elem = A > ,
@@ -385,7 +385,7 @@ where
385
385
}
386
386
387
387
/// Determinant of Hermitian (or real symmetric) positive definite matrix ref
388
- pub trait CholeskyDeterminant {
388
+ pub trait DeterminantC {
389
389
type Output ;
390
390
391
391
/// Computes the determinant of the Hermitian (or real symmetric) positive
@@ -395,15 +395,15 @@ pub trait CholeskyDeterminant {
395
395
396
396
397
397
/// Determinant of Hermitian (or real symmetric) positive definite matrix
398
- pub trait CholeskyDeterminantInto {
398
+ pub trait DeterminantCInto {
399
399
type Output ;
400
400
401
401
/// Computes the determinant of the Hermitian (or real symmetric) positive
402
402
/// definite matrix.
403
403
fn detc_into ( self ) -> Self :: Output ;
404
404
}
405
405
406
- impl < A , S > CholeskyDeterminant for ArrayBase < S , Ix2 >
406
+ impl < A , S > DeterminantC for ArrayBase < S , Ix2 >
407
407
where
408
408
A : Scalar ,
409
409
S : Data < Elem = A > ,
@@ -415,7 +415,7 @@ where
415
415
}
416
416
}
417
417
418
- impl < A , S > CholeskyDeterminantInto for ArrayBase < S , Ix2 >
418
+ impl < A , S > DeterminantCInto for ArrayBase < S , Ix2 >
419
419
where
420
420
A : Scalar ,
421
421
S : DataMut < Elem = A > ,
0 commit comments