|
| 1 | +use crate::imp_prelude::*; |
| 2 | +use num_complex::Complex; |
| 3 | +use rawpointer::PointerExt; |
| 4 | +use std::mem; |
| 5 | +use std::ptr::NonNull; |
| 6 | + |
1 | 7 | mod impl_numeric;
|
| 8 | + |
| 9 | +impl<T, S, D> ArrayBase<S, D> |
| 10 | +where |
| 11 | + S: Data<Elem = Complex<T>>, |
| 12 | + D: Dimension, |
| 13 | +{ |
| 14 | + /// Returns views of the real and imaginary components of the elements. |
| 15 | + /// |
| 16 | + /// ``` |
| 17 | + /// use ndarray::prelude::*; |
| 18 | + /// use num_complex::{Complex, Complex64}; |
| 19 | + /// |
| 20 | + /// let arr = array![ |
| 21 | + /// [Complex64::new(1., 2.), Complex64::new(3., 4.)], |
| 22 | + /// [Complex64::new(5., 6.), Complex64::new(7., 8.)], |
| 23 | + /// [Complex64::new(9., 10.), Complex64::new(11., 12.)], |
| 24 | + /// ]; |
| 25 | + /// let Complex { re, im } = arr.view_re_im(); |
| 26 | + /// assert_eq!(re, array![[1., 3.], [5., 7.], [9., 11.]]); |
| 27 | + /// assert_eq!(im, array![[2., 4.], [6., 8.], [10., 12.]]); |
| 28 | + /// ``` |
| 29 | + pub fn view_re_im(&self) -> Complex<ArrayView<'_, T, D>> { |
| 30 | + debug_assert!(self.pointer_is_inbounds()); |
| 31 | + |
| 32 | + let dim = self.dim.clone(); |
| 33 | + |
| 34 | + // Double the strides. In the zero-sized element case and for axes of |
| 35 | + // length <= 1, we leave the strides as-is to avoid possible overflow. |
| 36 | + let mut strides = self.strides.clone(); |
| 37 | + if mem::size_of::<T>() != 0 { |
| 38 | + for ax in 0..strides.ndim() { |
| 39 | + if dim[ax] > 1 { |
| 40 | + strides[ax] *= 2; |
| 41 | + } |
| 42 | + } |
| 43 | + } |
| 44 | + |
| 45 | + let ptr_re: NonNull<T> = self.ptr.cast(); |
| 46 | + let ptr_im: NonNull<T> = if self.is_empty() { |
| 47 | + // In the empty case, we can just reuse the existing pointer since |
| 48 | + // it won't be dereferenced anyway. It is not safe to offset by one |
| 49 | + // since the allocation may be empty. |
| 50 | + self.ptr.cast() |
| 51 | + } else { |
| 52 | + // Safe because `self` is nonempty, so we can safely offset into |
| 53 | + // the first element. |
| 54 | + unsafe { self.ptr.cast().add(1) } |
| 55 | + }; |
| 56 | + |
| 57 | + // `Complex` is `repr(C)` with only fields `re: T` and `im: T`. So, the |
| 58 | + // real components of the elements start at the same pointer, and the |
| 59 | + // imaginary components start at the pointer offset by one, with |
| 60 | + // exactly double the strides. The new, doubled strides still meet the |
| 61 | + // overflow constraints: |
| 62 | + // |
| 63 | + // - For the zero-sized element case, the strides are unchanged in |
| 64 | + // units of bytes and in units of the element type. |
| 65 | + // |
| 66 | + // - For the nonzero-sized element case: |
| 67 | + // |
| 68 | + // - In units of bytes, the strides are unchanged. |
| 69 | + // |
| 70 | + // - Since `Complex<T>` for nonzero `T` is always at least 2 bytes, |
| 71 | + // and the original strides did not overflow in units of bytes, we |
| 72 | + // know that the new doubled strides will not overflow in units of |
| 73 | + // `T`. |
| 74 | + unsafe { |
| 75 | + Complex { |
| 76 | + re: ArrayView::new(ptr_re, dim.clone(), strides.clone()), |
| 77 | + im: ArrayView::new(ptr_im, dim, strides), |
| 78 | + } |
| 79 | + } |
| 80 | + } |
| 81 | + |
| 82 | + /// Returns mutable views of the real and imaginary components of the elements. |
| 83 | + /// |
| 84 | + /// ``` |
| 85 | + /// use ndarray::prelude::*; |
| 86 | + /// use num_complex::{Complex, Complex64}; |
| 87 | + /// |
| 88 | + /// let mut arr = array![ |
| 89 | + /// [Complex64::new(1., 2.), Complex64::new(3., 4.)], |
| 90 | + /// [Complex64::new(5., 6.), Complex64::new(7., 8.)], |
| 91 | + /// [Complex64::new(9., 10.), Complex64::new(11., 12.)], |
| 92 | + /// ]; |
| 93 | + /// |
| 94 | + /// let Complex { mut re, mut im } = arr.view_mut_re_im(); |
| 95 | + /// assert_eq!(re, array![[1., 3.], [5., 7.], [9., 11.]]); |
| 96 | + /// assert_eq!(im, array![[2., 4.], [6., 8.], [10., 12.]]); |
| 97 | + /// |
| 98 | + /// re[[0, 1]] = 13.; |
| 99 | + /// im[[2, 0]] = 14.; |
| 100 | + /// |
| 101 | + /// assert_eq!(arr[[0, 1]], Complex64::new(13., 4.)); |
| 102 | + /// assert_eq!(arr[[2, 0]], Complex64::new(9., 14.)); |
| 103 | + /// ``` |
| 104 | + pub fn view_mut_re_im(&mut self) -> Complex<ArrayViewMut<'_, T, D>> |
| 105 | + where |
| 106 | + S: DataMut, |
| 107 | + { |
| 108 | + self.ensure_unique(); |
| 109 | + |
| 110 | + let dim = self.dim.clone(); |
| 111 | + |
| 112 | + // Double the strides. In the zero-sized element case and for axes of |
| 113 | + // length <= 1, we leave the strides as-is to avoid possible overflow. |
| 114 | + let mut strides = self.strides.clone(); |
| 115 | + if mem::size_of::<T>() != 0 { |
| 116 | + for ax in 0..strides.ndim() { |
| 117 | + if dim[ax] > 1 { |
| 118 | + strides[ax] *= 2; |
| 119 | + } |
| 120 | + } |
| 121 | + } |
| 122 | + |
| 123 | + let ptr_re: NonNull<T> = self.ptr.cast(); |
| 124 | + let ptr_im: NonNull<T> = if self.is_empty() { |
| 125 | + // In the empty case, we can just reuse the existing pointer since |
| 126 | + // it won't be dereferenced anyway. It is not safe to offset by one |
| 127 | + // since the allocation may be empty. |
| 128 | + self.ptr.cast() |
| 129 | + } else { |
| 130 | + // Safe because `self` is nonempty, so we can safely offset into |
| 131 | + // the first element. |
| 132 | + unsafe { self.ptr.cast().add(1) } |
| 133 | + }; |
| 134 | + |
| 135 | + // `Complex` is `repr(C)` with only fields `re: T` and `im: T`. So, the |
| 136 | + // real components of the elements start at the same pointer, and the |
| 137 | + // imaginary components start at the pointer offset by one, with |
| 138 | + // exactly double the strides. The new, doubled strides still meet the |
| 139 | + // overflow constraints: |
| 140 | + // |
| 141 | + // - For the zero-sized element case, the strides are unchanged in |
| 142 | + // units of bytes and in units of the element type. |
| 143 | + // |
| 144 | + // - For the nonzero-sized element case: |
| 145 | + // |
| 146 | + // - In units of bytes, the strides are unchanged. |
| 147 | + // |
| 148 | + // - Since `Complex<T>` for nonzero `T` is always at least 2 bytes, |
| 149 | + // and the original strides did not overflow in units of bytes, we |
| 150 | + // know that the new doubled strides will not overflow in units of |
| 151 | + // `T`. |
| 152 | + unsafe { |
| 153 | + Complex { |
| 154 | + re: ArrayViewMut::new(ptr_re, dim.clone(), strides.clone()), |
| 155 | + im: ArrayViewMut::new(ptr_im, dim, strides), |
| 156 | + } |
| 157 | + } |
| 158 | + } |
| 159 | +} |
0 commit comments