|
| 1 | +%I A054461 |
| 2 | +%S A054461 1584,13056,57744,133440,307632,519888,990288,1436208,2108832,3015648 |
| 3 | +%N A054461 Number of 3x3 integer matrices with elements in the range [-n,n] which generate a group of finite order under binary matrix multiplication. |
| 4 | +%O A054461 1,1 |
| 5 | +%K A054461 nonn |
| 6 | +%A A054461 Ralf W. Grosse-Kunstleve ( [email protected]) |
| 7 | +%Y A054461 A054461(n) = 2*(1+A054462(n)+A054463(n)+A054464(n)+A054465(n)). |
| 8 | + |
| 9 | +%I A054462 |
| 10 | +%S A054462 81,321,825,1689,2601,4185,5529,8145,10401,13137 |
| 11 | +%N A054462 Number of 3x3 integer matrices with elements in the range [-n,n] which represent a two-fold rotation. Also the sequence for the corresponding two-fold rotoinversions. |
| 12 | +%O A054462 1,1 |
| 13 | +%K A054462 nonn |
| 14 | +%A A054462 Ralf W. Grosse-Kunstleve ( [email protected]) |
| 15 | +%Y A054462 Cf. A054461. |
| 16 | + |
| 17 | +%I A054463 |
| 18 | +%S A054463 308,1916,9572,20732,43148,73052,155156,219716,331892,440036 |
| 19 | +%N A054463 Number of 3x3 integer matrices with elements in the range [-n,n] which represent a three-fold rotation. Also the sequence for the corresponding three-fold rotoinversions. |
| 20 | +%O A054463 1,1 |
| 21 | +%K A054463 nonn |
| 22 | +%A A054463 Ralf W. Grosse-Kunstleve ( [email protected]) |
| 23 | +%Y A054463 Cf. A054461. |
| 24 | + |
| 25 | +%I A054464 |
| 26 | +%S A054464 174,2694,8814,23310,64782,105678,171006,259446,368334,599022 |
| 27 | +%N A054464 Number of 3x3 integer matrices with elements in the range [-n,n] which represent a four-fold rotation. Also the sequence for the corresponding four-fold rotoinversions. |
| 28 | +%O A054464 1,1 |
| 29 | +%K A054464 nonn |
| 30 | +%A A054464 Ralf W. Grosse-Kunstleve ( [email protected]) |
| 31 | +%Y A054464 Cf. A054461. |
| 32 | + |
| 33 | +%I A054465 |
| 34 | +%S A054465 228,1596,9660,20988,43284,77028,163452,230796,343788,455628 |
| 35 | +%N A054465 Number of 3x3 integer matrices with elements in the range [-n,n] which represent a six-fold rotation. Also the sequence for the corresponding six-fold rotoinversions. |
| 36 | +%O A054465 1,1 |
| 37 | +%K A054465 nonn |
| 38 | +%A A054465 Ralf W. Grosse-Kunstleve ( [email protected]) |
| 39 | +%Y A054465 Cf. A054461. |
| 40 | + |
| 41 | +%I A054466 |
| 42 | +%S A054466 163,643,1651,3379,5203,8371,11059,16291,20803,26275 |
| 43 | +%N A054466 Number of 3x3 integer matrices with elements in the range [-n,n] which generate a group of order two under binary matrix multiplication. |
| 44 | +%O A054466 1,1 |
| 45 | +%K A054466 nonn |
| 46 | +%A A054466 Ralf W. Grosse-Kunstleve ( [email protected]) |
| 47 | +%Y A054466 A054466(n) = 1+2*A054462(n). |
| 48 | + |
| 49 | +%I A054467 |
| 50 | +%S A054467 348,5388,17628,46620,129564,211356,342012,518892,736668,1198044 |
| 51 | +%N A054467 Number of 3x3 integer matrices with elements in the range [-n,n] which generate a group of order four under binary matrix multiplication. |
| 52 | +%O A054467 1,1 |
| 53 | +%K A054467 nonn |
| 54 | +%A A054467 Ralf W. Grosse-Kunstleve ( [email protected]) |
| 55 | +%Y A054467 A054467(n) = 2*A054464(n). |
| 56 | + |
| 57 | +%I A054468 |
| 58 | +%S A054468 764,5108,28892,62708,129716,227108,482060,681308,1019468,1351292 |
| 59 | +%N A054468 Number of 3x3 integer matrices with elements in the range [-n,n] which generate a group of order six under binary matrix multiplication. |
| 60 | +%O A054468 1,1 |
| 61 | +%K A054468 nonn |
| 62 | +%A A054468 Ralf W. Grosse-Kunstleve ( [email protected]) |
| 63 | +%Y A054468 A054468(n) = A054463(n)+2*A054465(n). |
0 commit comments