@@ -17,6 +17,9 @@ Aside from the default model configs, there is a lot of flexibility to facilitat
1717
1818
1919## Updates / Tasks
20+ ### 2020-09-03
21+ * All models updated to latest checkpoints from TF original.
22+ * Add experimental soft-nms code, must be manually enabled right now. It is REALLY slow, .1-.2 mAP increase.
2023
2124### 2020-07-27
2225* Add updated TF ported weights for D3 model (better training) and model def and weights for new D7X model (54.3 val mAP)
@@ -160,27 +163,27 @@ If you are an organization is interested in sponsoring and any of this work, or
160163| Variant | Download | mAP (val2017) | mAP (test-dev2017) | mAP (TF official val2017) | mAP (TF official test-dev2017) |
161164| --- | --- | :---: | :---: | :---: | :---: |
162165| lite0 | [ tf_efficientdet_lite0.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_lite0-f5f303a9.pth ) | 32.0 | TBD | N/A | N/A |
163- | D0 | [ tf_efficientdet_d0.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d0-d92fd44f.pth ) | 33.6 | TBD | 33.5 | 33.8 |
164- | D0 | [ efficientdet_d0.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/efficientdet_d0-f3276ba8.pth ) | 33.6 | TBD | 33.5 | 33.8 |
165- | D1 | [ tf_efficientdet_d1.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d1-4c7ebaf2.pth ) | 39.3 | TBD | 39.1 | 39.6 |
166+ | D0 | [ efficientdet_d0.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d0_34-f153e0cf.pth ) | 33.6 | TBD | 33.5 | 33.8 |
167+ | D0 | [ tf_efficientdet_d0.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d0_34-1851dfed.pth ) | 34.2 | TBD | 34.3 | 34.6 |
166168| D1 | [ efficientdet_d1.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/efficientdet_d1-bb7e98fe.pth ) | 39.4 | 39.5 | 39.1 | 39.6 |
167- | D2 | [ tf_efficientdet_d2.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d2-cb4ce77d.pth ) | 42.6 | 43.1 | 42.5 | 43 |
169+ | D1 | [ tf_efficientdet_d1.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d1_40-a30f94af.pth ) | 40.1 | TBD | 40.2 | 40.5 |
170+ | D2 | [ tf_efficientdet_d2.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d2_43-8107aa99.pth ) | 43.4 | TBD | 42.5 | 43 |
168171| D3 | [ tf_efficientdet_d3.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d3_47-0b525f35.pth ) | 47.1 | TBD | 47.2 | 47.5 |
169- | D4 | [ tf_efficientdet_d4.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d4-5b370b7a .pth ) | 49.1 | TBD | 49.0 | 49.4 |
170- | D5 | [ tf_efficientdet_d5.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d5-ef44aea8 .pth ) | 50.4 | TBD | 50.5 | 50.7 |
171- | D6 | [ tf_efficientdet_d6.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d6-51cb0132 .pth ) | 51.2 | TBD | 51.3 | 51.7 |
172+ | D4 | [ tf_efficientdet_d4.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d4_49-f56376d9 .pth ) | 49.2 | TBD | 49.3 | 49.7 |
173+ | D5 | [ tf_efficientdet_d5.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d5_51-c79f9be6 .pth ) | 51.2 | TBD | 51.2 | 51.5 |
174+ | D6 | [ tf_efficientdet_d6.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d6_52-4eda3773 .pth ) | 52.0 | TBD | 52.1 | 52.6 |
172175| D7 | [ tf_efficientdet_d7.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d7_53-6d1d7a95.pth ) | 53.1 | 53.4 | 53.4 | 53.7 |
173176| D7X | [ tf_efficientdet_d7x.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d7x-f390b87c.pth ) | 54.3 | TBD | 54.4 | 55.1 |
174177
175- _ NOTE: Eval for TF D3, D7, and D7X numbers above were run with soft-nms, but still using normal NMS here._
178+ _ NOTE: Official scores for all modules now using soft-nms, but still using normal NMS here._
176179
177180## Usage
178181
179182### Environment Setup
180183
181184Tested in a Python 3.7 or 3.8 conda environment in Linux with:
182- * PyTorch 1.4
183- * PyTorch Image Models (timm) 0.1.20 , ` pip install timm ` or local install from (https://github.com/rwightman/pytorch-image-models )
185+ * PyTorch 1.4 or PyTorch 1.6 (I recommend avoiding PyTorch 1.5 due to some jit and argmax issues)
186+ * PyTorch Image Models (timm) >= 0.1.28 , ` pip install timm ` or local install from (https://github.com/rwightman/pytorch-image-models )
184187* Apex AMP master (as of 2020-04)
185188
186189* NOTE* - There is a conflict/bug with Numpy 1.18+ and pycocotools, force install numpy <= 1.17.5 or the coco eval will fail,
@@ -274,26 +277,9 @@ For this run I used some improved augmentations, still experimenting so not read
274277
275278#### TEST-DEV2017
276279
277- NOTE: I've only tried submitting D2 and D7 to dev server for sanity check so far
280+ NOTE: I've only tried submitting D7 to dev server for sanity check so far
278281
279- ##### EfficientDet-D2
280-
281- ```
282- Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.431
283- Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.624
284- Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.463
285- Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.226
286- Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.471
287- Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.585
288- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.345
289- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.543
290- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.575
291- Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.342
292- Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.632
293- Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.756
294- ```
295-
296- ##### EfficientDet-D7
282+ ##### TF-EfficientDet-D7
297283```
298284 Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.534
299285 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.726
@@ -311,56 +297,56 @@ NOTE: I've only tried submitting D2 and D7 to dev server for sanity check so far
311297
312298#### VAL2017
313299
314- ##### EfficientDet-D0
300+ ##### TF- EfficientDet-D0
315301```
316- Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.336
317- Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.516
318- Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.354
319- Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.125
320- Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.387
321- Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.528
322- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.288
323- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.440
324- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.467
325- Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.194
326- Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.549
327- Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.686
302+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.341877
303+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.525112
304+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.360218
305+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.131366
306+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.399686
307+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.537368
308+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.293137
309+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.447829
310+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.472954
311+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.195282
312+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.558127
313+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.695312
328314```
329315
330- ##### EfficientDet-D1
316+ ##### TF- EfficientDet-D1
331317```
332- Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.393
333- Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.583
334- Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.419
335- Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.187
336- Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.447
337- Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.572
338- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.323
339- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.501
340- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.532
341- Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.295
342- Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.599
343- Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.734
318+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.401070
319+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.590625
320+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.422998
321+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.211116
322+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.459650
323+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.577114
324+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.326565
325+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.507095
326+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.537278
327+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.308963
328+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.610450
329+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.731814
344330```
345331
346- ##### EfficientDet-D2
332+ ##### TF- EfficientDet-D2
347333```
348- Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.426
349- Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.618
350- Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.452
351- Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.237
352- Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.481
353- Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.590
354- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.342
355- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.537
356- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.569
357- Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.348
358- Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.633
359- Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.748
334+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.434042
335+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.627834
336+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.463488
337+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.237414
338+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.486118
339+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.606151
340+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.343016
341+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.538328
342+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.571489
343+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.350301
344+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.638884
345+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.746671
360346```
361347
362- ##### EfficientDet-D3
363- _ NOTE: Official TF impl uses soft-nms for their scoring of this model, not impl here yet _
348+ ##### TF EfficientDet-D3
349+
364350```
365351 Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.471223
366352 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.661550
@@ -376,55 +362,55 @@ _NOTE: Official TF impl uses soft-nms for their scoring of this model, not impl
376362 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.779611
377363```
378364
379- ##### EfficientDet-D4
365+ ##### TF- EfficientDet-D4
380366 ```
381- Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.491
382- Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.685
383- Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.531
384- Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.334
385- Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.539
386- Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.641
387- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.375
388- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.598
389- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.635
390- Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.468
391- Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.683
392- Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.780
367+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.491759
368+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.686005
369+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.527791
370+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.325658
371+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.536508
372+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.635309
373+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.373752
374+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.601733
375+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.638343
376+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.463057
377+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.685103
378+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.789180
393379```
394380
395- ##### EfficientDet-D5
381+ ##### TF- EfficientDet-D5
396382```
397- Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.504
398- Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.700
399- Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.543
400- Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.337
401- Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.549
402- Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.646
403- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.381
404- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.617
405- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.654
406- Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.485
407- Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.696
408- Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.791
383+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.511767
384+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.704835
385+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.552920
386+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.355680
387+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.551341
388+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.650184
389+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.384516
390+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.619196
391+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.657445
392+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.499319
393+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.695617
394+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.788889
409395```
410396
411- ##### EfficientDet-D6
397+ ##### TF- EfficientDet-D6
412398```
413- Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.512
414- Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.706
415- Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.551
416- Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.348
417- Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.555
418- Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.654
419- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.386
420- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.623
421- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.661
422- Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.500
423- Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.701
424- Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.794
399+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.520200
400+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.713204
401+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.560973
402+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.361596
403+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.567414
404+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.657173
405+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.387733
406+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.629269
407+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.667495
408+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.499002
409+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.711909
410+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.802336
425411```
426412
427- ##### EfficientDet-D7
413+ ##### TF- EfficientDet-D7
428414 ```
429415 Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.531256
430416 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.724700
@@ -440,8 +426,8 @@ _NOTE: Official TF impl uses soft-nms for their scoring of this model, not impl
440426 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.806352
441427 ```
442428
443- ##### EfficientDet-D7X
444- _ NOTE: Official TF impl uses soft-nms for their scoring of this model, not impl here yet _
429+ ##### TF- EfficientDet-D7X
430+
445431```
446432 Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.543
447433 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.737
0 commit comments