|
| 1 | +from __future__ import annotations |
| 2 | + |
| 3 | +__all__ = [ |
| 4 | + "VGG4LayerActFrontendV1", |
| 5 | + "VGG4LayerActFrontendV1Config", |
| 6 | +] |
| 7 | + |
| 8 | +from dataclasses import dataclass |
| 9 | +from typing import Callable, Optional, Tuple, Union |
| 10 | + |
| 11 | +import torch |
| 12 | +from torch import nn |
| 13 | + |
| 14 | +from i6_models.config import ModelConfiguration |
| 15 | + |
| 16 | +from .common import get_same_padding, mask_pool, calculate_output_dim |
| 17 | + |
| 18 | + |
| 19 | +@dataclass |
| 20 | +class VGG4LayerActFrontendV1Config(ModelConfiguration): |
| 21 | + """ |
| 22 | + Attributes: |
| 23 | + in_features: number of input features to module |
| 24 | + conv1_channels: number of channels for first conv layer |
| 25 | + conv2_channels: number of channels for second conv layer |
| 26 | + conv3_channels: number of channels for third conv layer |
| 27 | + conv4_channels: number of channels for fourth conv layer |
| 28 | + conv_kernel_size: kernel size of conv layers |
| 29 | + conv_padding: padding for the convolution |
| 30 | + pool1_kernel_size: kernel size of first pooling layer |
| 31 | + pool1_stride: stride of first pooling layer |
| 32 | + pool1_padding: padding for first pooling layer |
| 33 | + pool2_kernel_size: kernel size of second pooling layer |
| 34 | + pool2_stride: stride of second pooling layer |
| 35 | + pool2_padding: padding for second pooling layer |
| 36 | + activation: activation function at the end |
| 37 | + out_features: output size of the final linear layer |
| 38 | + """ |
| 39 | + |
| 40 | + in_features: int |
| 41 | + conv1_channels: int |
| 42 | + conv2_channels: int |
| 43 | + conv3_channels: int |
| 44 | + conv4_channels: int |
| 45 | + conv_kernel_size: Tuple[int, int] |
| 46 | + conv_padding: Optional[Tuple[int, int]] |
| 47 | + pool1_kernel_size: Tuple[int, int] |
| 48 | + pool1_stride: Optional[Tuple[int, int]] |
| 49 | + pool1_padding: Optional[Tuple[int, int]] |
| 50 | + pool2_kernel_size: Tuple[int, int] |
| 51 | + pool2_stride: Optional[Tuple[int, int]] |
| 52 | + pool2_padding: Optional[Tuple[int, int]] |
| 53 | + activation: Union[nn.Module, Callable[[torch.Tensor], torch.Tensor]] |
| 54 | + out_features: int |
| 55 | + |
| 56 | + def check_valid(self): |
| 57 | + if isinstance(self.conv_kernel_size, int): |
| 58 | + assert self.conv_kernel_size % 2 == 1, "ConformerVGGFrontendV1 only supports odd kernel sizes" |
| 59 | + if isinstance(self.pool1_kernel_size, int): |
| 60 | + assert self.pool1_kernel_size % 2 == 1, "ConformerVGGFrontendV1 only supports odd kernel sizes" |
| 61 | + if isinstance(self.pool2_kernel_size, int): |
| 62 | + assert self.pool2_kernel_size % 2 == 1, "ConformerVGGFrontendV1 only supports odd kernel sizes" |
| 63 | + |
| 64 | + def __post__init__(self): |
| 65 | + super().__post_init__() |
| 66 | + self.check_valid() |
| 67 | + |
| 68 | + |
| 69 | +class VGG4LayerActFrontendV1(nn.Module): |
| 70 | + """ |
| 71 | + Convolutional Front-End |
| 72 | +
|
| 73 | + The frond-end utilizes convolutional and pooling layers, as well as activation functions |
| 74 | + to transform a feature vector, typically Log-Mel or Gammatone for audio, into an intermediate |
| 75 | + representation. |
| 76 | +
|
| 77 | + Structure of the front-end: |
| 78 | + - Conv |
| 79 | + - Conv |
| 80 | + - Activation |
| 81 | + - Pool |
| 82 | + - Conv |
| 83 | + - Conv |
| 84 | + - Activation |
| 85 | + - Pool |
| 86 | +
|
| 87 | + Uses explicit padding for ONNX exportability, see: |
| 88 | + https://github.com/pytorch/pytorch/issues/68880 |
| 89 | + """ |
| 90 | + |
| 91 | + def __init__(self, model_cfg: VGG4LayerActFrontendV1Config): |
| 92 | + """ |
| 93 | + :param model_cfg: model configuration for this module |
| 94 | + """ |
| 95 | + super().__init__() |
| 96 | + |
| 97 | + model_cfg.check_valid() |
| 98 | + |
| 99 | + self.cfg = model_cfg |
| 100 | + |
| 101 | + conv_padding = ( |
| 102 | + model_cfg.conv_padding |
| 103 | + if model_cfg.conv_padding is not None |
| 104 | + else get_same_padding(model_cfg.conv_kernel_size) |
| 105 | + ) |
| 106 | + pool1_padding = model_cfg.pool1_padding if model_cfg.pool1_padding is not None else (0, 0) |
| 107 | + pool2_padding = model_cfg.pool2_padding if model_cfg.pool2_padding is not None else (0, 0) |
| 108 | + |
| 109 | + self.conv1 = nn.Conv2d( |
| 110 | + in_channels=1, |
| 111 | + out_channels=model_cfg.conv1_channels, |
| 112 | + kernel_size=model_cfg.conv_kernel_size, |
| 113 | + padding=conv_padding, |
| 114 | + ) |
| 115 | + self.conv2 = nn.Conv2d( |
| 116 | + in_channels=model_cfg.conv1_channels, |
| 117 | + out_channels=model_cfg.conv2_channels, |
| 118 | + kernel_size=model_cfg.conv_kernel_size, |
| 119 | + padding=conv_padding, |
| 120 | + ) |
| 121 | + self.pool1 = nn.MaxPool2d( |
| 122 | + kernel_size=model_cfg.pool1_kernel_size, |
| 123 | + stride=model_cfg.pool1_stride, |
| 124 | + padding=pool1_padding, |
| 125 | + ) |
| 126 | + self.conv3 = nn.Conv2d( |
| 127 | + in_channels=model_cfg.conv2_channels, |
| 128 | + out_channels=model_cfg.conv3_channels, |
| 129 | + kernel_size=model_cfg.conv_kernel_size, |
| 130 | + padding=conv_padding, |
| 131 | + ) |
| 132 | + self.conv4 = nn.Conv2d( |
| 133 | + in_channels=model_cfg.conv3_channels, |
| 134 | + out_channels=model_cfg.conv4_channels, |
| 135 | + kernel_size=model_cfg.conv_kernel_size, |
| 136 | + padding=conv_padding, |
| 137 | + ) |
| 138 | + self.pool2 = nn.MaxPool2d( |
| 139 | + kernel_size=model_cfg.pool2_kernel_size, |
| 140 | + stride=model_cfg.pool2_stride, |
| 141 | + padding=pool2_padding, |
| 142 | + ) |
| 143 | + self.activation = model_cfg.activation |
| 144 | + self.linear = nn.Linear( |
| 145 | + in_features=self._calculate_dim(), |
| 146 | + out_features=model_cfg.out_features, |
| 147 | + bias=True, |
| 148 | + ) |
| 149 | + |
| 150 | + def forward(self, tensor: torch.Tensor, sequence_mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
| 151 | + """ |
| 152 | + T might be reduced to T' or T'' depending on stride of the layers |
| 153 | +
|
| 154 | + stride is only allowed for the pool1 and pool2 operation. |
| 155 | + other ops do not have stride configurable -> no update of mask sequence required but added anyway |
| 156 | +
|
| 157 | + :param tensor: input tensor of shape [B,T,F] |
| 158 | + :param sequence_mask: the sequence mask for the tensor |
| 159 | + :return: torch.Tensor of shape [B,T",F'] and the shape of the sequence mask |
| 160 | + """ |
| 161 | + assert tensor.shape[-1] == self.cfg.in_features |
| 162 | + # and add a dim |
| 163 | + tensor = tensor[:, None, :, :] # [B,C=1,T,F] |
| 164 | + |
| 165 | + tensor = self.conv1(tensor) |
| 166 | + sequence_mask = mask_pool( |
| 167 | + seq_mask=sequence_mask, |
| 168 | + kernel_size=self.conv1.kernel_size[0], |
| 169 | + stride=self.conv1.stride[0], |
| 170 | + padding=self.conv1.padding[0], |
| 171 | + ) |
| 172 | + |
| 173 | + tensor = self.conv2(tensor) |
| 174 | + sequence_mask = mask_pool( |
| 175 | + sequence_mask, |
| 176 | + kernel_size=self.conv2.kernel_size[0], |
| 177 | + stride=self.conv2.stride[0], |
| 178 | + padding=self.conv2.padding[0], |
| 179 | + ) |
| 180 | + |
| 181 | + tensor = self.activation(tensor) |
| 182 | + tensor = self.pool1(tensor) # [B,C,T',F'] |
| 183 | + sequence_mask = mask_pool( |
| 184 | + sequence_mask, |
| 185 | + kernel_size=self.pool1.kernel_size[0], |
| 186 | + stride=self.pool1.stride[0], |
| 187 | + padding=self.pool1.padding[0], |
| 188 | + ) |
| 189 | + |
| 190 | + tensor = self.conv3(tensor) |
| 191 | + sequence_mask = mask_pool( |
| 192 | + sequence_mask, |
| 193 | + kernel_size=self.conv3.kernel_size[0], |
| 194 | + stride=self.conv3.stride[0], |
| 195 | + padding=self.conv3.padding[0], |
| 196 | + ) |
| 197 | + |
| 198 | + tensor = self.conv4(tensor) |
| 199 | + sequence_mask = mask_pool( |
| 200 | + sequence_mask, |
| 201 | + kernel_size=self.conv4.kernel_size[0], |
| 202 | + stride=self.conv4.stride[0], |
| 203 | + padding=self.conv4.padding[0], |
| 204 | + ) |
| 205 | + |
| 206 | + tensor = self.activation(tensor) |
| 207 | + tensor = self.pool2(tensor) # [B,C,T",F"] |
| 208 | + sequence_mask = mask_pool( |
| 209 | + sequence_mask, |
| 210 | + kernel_size=self.pool2.kernel_size[0], |
| 211 | + stride=self.pool2.stride[0], |
| 212 | + padding=self.pool2.padding[0], |
| 213 | + ) |
| 214 | + |
| 215 | + tensor = torch.transpose(tensor, 1, 2) # transpose to [B,T",C,F"] |
| 216 | + tensor = torch.flatten(tensor, start_dim=2, end_dim=-1) # [B,T",C*F"] |
| 217 | + |
| 218 | + tensor = self.linear(tensor) |
| 219 | + |
| 220 | + return tensor, sequence_mask |
| 221 | + |
| 222 | + def _calculate_dim(self) -> int: |
| 223 | + # conv1 |
| 224 | + out_dim = calculate_output_dim( |
| 225 | + in_dim=self.cfg.in_features, |
| 226 | + filter_size=self.conv1.kernel_size[1], |
| 227 | + stride=self.conv1.stride[1], |
| 228 | + padding=self.conv1.padding[1], |
| 229 | + ) |
| 230 | + # conv2 |
| 231 | + out_dim = calculate_output_dim( |
| 232 | + in_dim=out_dim, |
| 233 | + filter_size=self.conv2.kernel_size[1], |
| 234 | + stride=self.conv2.stride[1], |
| 235 | + padding=self.conv2.padding[1], |
| 236 | + ) |
| 237 | + # pool1 |
| 238 | + out_dim = calculate_output_dim( |
| 239 | + in_dim=out_dim, |
| 240 | + filter_size=self.pool1.kernel_size[1], |
| 241 | + stride=self.pool1.stride[1], |
| 242 | + padding=self.pool1.padding[1], |
| 243 | + ) |
| 244 | + # conv3 |
| 245 | + out_dim = calculate_output_dim( |
| 246 | + in_dim=out_dim, |
| 247 | + filter_size=self.conv3.kernel_size[1], |
| 248 | + stride=self.conv3.stride[1], |
| 249 | + padding=self.conv3.padding[1], |
| 250 | + ) |
| 251 | + # conv4 |
| 252 | + out_dim = calculate_output_dim( |
| 253 | + in_dim=out_dim, |
| 254 | + filter_size=self.conv4.kernel_size[1], |
| 255 | + stride=self.conv4.stride[1], |
| 256 | + padding=self.conv4.padding[1], |
| 257 | + ) |
| 258 | + # pool2 |
| 259 | + out_dim = calculate_output_dim( |
| 260 | + in_dim=out_dim, |
| 261 | + filter_size=self.pool2.kernel_size[1], |
| 262 | + stride=self.pool2.stride[1], |
| 263 | + padding=self.pool2.padding[1], |
| 264 | + ) |
| 265 | + out_dim *= self.conv4.out_channels |
| 266 | + return out_dim |
0 commit comments