@@ -6837,6 +6837,148 @@ def test_RelativePositionalEncodingLayer():
68376837 print (out ) # random...
68386838
68396839
6840+ def _build_self_attention_layer (d , input , output , inside_rec_layer , query_axis , num_heads = 8 , key_dim = 64 ,
6841+ value_dim = 64 , dropout = 0.0 ):
6842+ """
6843+ Essentially this does
6844+ d[output + '_att'] = {"class": "self_attention", "num_heads": num_heads,
6845+ "total_key_dim": num_heads * key_dim,
6846+ "n_out": num_heads * value_dim, "from": [input],
6847+ "attention_left_only": inside_rec_layer,
6848+ "attention_dropout": dropout, "forward_weights_init": self.ff_init}
6849+ But using multiple layers.
6850+ """
6851+ # Create (non-accumulated) query, key and value
6852+ d [output + '_qkv0' ] = {
6853+ 'class' : 'linear' , 'activation' : None , 'with_bias' : False , 'from' : [input ],
6854+ 'n_out' : num_heads * (2 * key_dim + value_dim )} # [B,T?,F|n*(2d_k+d_v)]
6855+ d [output + '_qkv' ] = {
6856+ 'class' : 'split_dims' , 'axis' : 'F' , 'dims' : (num_heads , 2 * key_dim + value_dim ),
6857+ 'from' : [output + '_qkv0' ]} # [B,T?,n,F|2d_k+d_v]
6858+ d [output + '_qkv_split' ] = {
6859+ 'class' : 'split' , 'axis' : 'F' , 'size_splits' : (key_dim , key_dim , value_dim ), 'from' : [output + '_qkv' ]}
6860+ d [output + '_query' ] = {'class' : 'copy' , 'from' : [output + '_qkv_split/0' ]} # [B,T?,n,F|d_k]
6861+ d [output + '_key' ] = {'class' : 'copy' , 'from' : [output + '_qkv_split/1' ]} # [B,T?,n,F|d_k]
6862+ d [output + '_value' ] = {'class' : 'copy' , 'from' : [output + '_qkv_split/2' ]} # [B,T?,n,F|d_v]
6863+
6864+ # Accumulate keys/values or rename the axis
6865+ key_dim_tag = DimensionTag (kind = DimensionTag .Types .Time , description = 'self-att-keys' )
6866+ key_axis = 'stag:' + key_dim_tag .description
6867+ if inside_rec_layer :
6868+ d [output + '_key_accum' ] = {
6869+ 'class' : 'cum_concat' , 'from' : [output + '_key' ], 'new_dim' : key_dim_tag } # [B,T|rec-history,n,F|d_k]
6870+ d [output + '_value_accum' ] = {
6871+ 'class' : 'cum_concat' , 'from' : [output + '_value' ], 'new_dim' : key_dim_tag } # [B,T|rec-history,n,F|d_v]
6872+ else :
6873+ d [output + '_key_accum' ] = {
6874+ 'class' : 'reinterpret_data' , 'set_dim_tags' : {query_axis : key_dim_tag },
6875+ 'from' : [output + '_key' ]} # [B,T|keys,n,F|d_k]
6876+ d [output + '_value_accum' ] = {
6877+ 'class' : 'reinterpret_data' , 'set_dim_tags' : {query_axis : key_dim_tag },
6878+ 'from' : [output + '_value' ]} # [B,T|keys,n,F|d_v]
6879+
6880+ # Calculate the energies
6881+ d [output + '_energy' ] = {
6882+ 'class' : 'dot' , 'from' : [output + '_query' , output + '_key_accum' ],
6883+ 'red1' : 'static:-1' , 'red2' : 'static:-1' ,
6884+ 'var1' : None if inside_rec_layer else query_axis , 'var2' : key_dim_tag } # [B,n,T?,T|rec-history]
6885+
6886+ d [output + '_weights' ] = {
6887+ 'class' : 'softmax_over_spatial' , 'from' : [output + '_energy' ], 'axis' : key_axis ,
6888+ 'energy_factor' : key_dim ** - 0.5 } # [B,n,T?,T|rec-history]
6889+ d [output + '_weights_drop' ] = {
6890+ 'class' : 'dropout' , 'dropout_noise_shape' : {'*' : None }, 'from' : [output + '_weights' ],
6891+ 'dropout' : dropout } # [B,n,T?,T|rec-history]
6892+
6893+ d [output + '_output' ] = {
6894+ 'class' : 'dot' , 'from' : [output + '_weights_drop' , output + '_value_accum' ],
6895+ 'red1' : key_axis , 'red2' : key_axis ,
6896+ "var1" : None if inside_rec_layer else query_axis , "var2" : "static:-1" } # [B,n,T?,F|d_v]
6897+ d [output + '_att' ] = {'class' : 'merge_dims' , 'axes' : 'static' , 'from' : [output + '_output' ]} # [B,T?,F|n*d_v]
6898+
6899+
6900+ def test_CumConcatLayer_self_attention_equal_to_SelfAttentionLayer ():
6901+ n_time = 13
6902+ num_heads , key_dim , value_dim = 2 , 3 , 3
6903+ for inside_rec_layer in [False , True ]:
6904+ with make_scope () as session :
6905+ print ('Testing inside_rec_layer=%s' % inside_rec_layer )
6906+
6907+ # build net dict
6908+ if inside_rec_layer :
6909+ net_dict = {
6910+ "output" : {
6911+ "class" : "rec" , "target" : "classes" , "from" : [],
6912+ "unit" : {
6913+ "single_layer_att" : {
6914+ "class" : "self_attention" , "from" : "prev:single_layer_att" , "num_heads" : num_heads ,
6915+ "total_key_dim" : num_heads * key_dim , "n_out" : num_heads * value_dim ,
6916+ "attention_left_only" : inside_rec_layer , 'is_output_layer' : True }, # [B,T,F]
6917+ "multi_layer_att" : None , # [B,T,F], added below.
6918+ "output" : {"class" : "compare" , "from" : ["single_layer_att" , "multi_layer_att" ]}}}}
6919+ _build_self_attention_layer (
6920+ net_dict ["output" ]["unit" ], 'prev:multi_layer_att' , 'multi_layer' , inside_rec_layer = True ,
6921+ query_axis = 'stag:extern_data:classes' , num_heads = num_heads , key_dim = key_dim , value_dim = value_dim )
6922+ net_dict ["output" ]["unit" ]["multi_layer_att" ]["is_output_layer" ] = True
6923+ net_dict ["output" ]["unit" ]["multi_layer_qkv0" ]["is_output_layer" ] = True # we need to set the matrix here
6924+ else :
6925+ net_dict = {
6926+ "single_layer_att" : {
6927+ "class" : "self_attention" , "from" : "data" , "num_heads" : num_heads , "total_key_dim" : num_heads * key_dim ,
6928+ "n_out" : num_heads * value_dim , "attention_left_only" : inside_rec_layer ,
6929+ 'is_output_layer' : True }, # [B,T,F]
6930+ "multi_layer_att" : None , # [B,T,F], added below.
6931+ "output" : {"class" : "compare" , "from" : ["single_layer_att" , "multi_layer_att" ]}
6932+ }
6933+ _build_self_attention_layer (
6934+ net_dict , 'data' , 'multi_layer' , inside_rec_layer = False , query_axis = 'stag:extern_data:data' ,
6935+ num_heads = num_heads , key_dim = key_dim , value_dim = value_dim )
6936+ net_dict ["multi_layer_att" ]["is_output_layer" ] = True
6937+
6938+ config = Config ({
6939+ "debug_print_layer_output_template" : True , "optimize_move_layers_out" : True })
6940+ config .update (dict (num_inputs = num_heads * key_dim , num_outputs = num_heads * value_dim ))
6941+ network = TFNetwork (config = config , train_flag = True )
6942+ from pprint import pprint
6943+ pprint (net_dict )
6944+ network .construct_from_dict (net_dict )
6945+
6946+ if inside_rec_layer :
6947+ single_layer = network .get_layer ("output/single_layer_att" )
6948+ multi_layer = network .get_layer ("output/multi_layer_att" )
6949+
6950+ # Note: single_layer.params etc. do not contain the params, need to access rec cell directly
6951+ rec_layer = network .get_layer ("output" )
6952+ single_weights = rec_layer .cell .net .get_layer ("single_layer_att" ).params ["QKV" ]
6953+ multi_weights = rec_layer .cell .net .get_layer ("multi_layer_qkv0" ).params ["W" ]
6954+ else :
6955+ single_layer = network .get_layer ("single_layer_att" )
6956+ multi_layer = network .get_layer ("multi_layer_att" )
6957+ single_weights = single_layer .params ["QKV" ]
6958+ multi_weights = network .get_layer ("multi_layer_qkv0" ).params ["W" ]
6959+
6960+ assert_equal (single_layer .output .batch_shape , (None , None , num_heads * value_dim ))
6961+ assert_equal (multi_layer .output .batch_shape , (None , None , num_heads * value_dim ))
6962+
6963+ # set weights equal.
6964+ assert_equal (single_weights .shape , multi_weights .shape )
6965+ weights = numpy .random .rand (* single_weights .shape )
6966+ session .run (tf .compat .v1 .assign (single_weights , weights ))
6967+ session .run (tf .compat .v1 .assign (multi_weights , weights ))
6968+
6969+ # fetch/compare outputs
6970+ from tests .test_TFNetworkLayer import make_feed_dict
6971+ feed_dict = make_feed_dict (network .extern_data .data .values (), same_time = True , n_time = n_time )
6972+ single , multi = session .run (
6973+ [single_layer .output .placeholder , multi_layer .output .placeholder ], feed_dict = feed_dict )
6974+ print ('single layer output:' )
6975+ pprint (single )
6976+ print ('multi layer output:' )
6977+ pprint (multi )
6978+ numpy .testing .assert_almost_equal (single , multi , decimal = 5 )
6979+ print ('They are equal!' )
6980+
6981+
68406982if __name__ == "__main__" :
68416983 try :
68426984 better_exchook .install ()
0 commit comments